Uncoupling Dendrite Growth and Patterning: Single-Cell Knockout Analysis of NMDA Receptor 2B

N-methyl-D-aspartate receptors (NMDARs) play important functions in neural development. NR2B is the predominant NR2 subunit of NMDAR in the developing brain. Here we use mosaic analysis with double markers (MADM) to knock out NR2B in isolated single cells and analyze its cell-autonomous function in...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Neuron (Cambridge, Mass.) Mass.), 2009-04, Vol.62 (2), p.205-217
Hauptverfasser: Espinosa, J. Sebastian, Wheeler, Damian G., Tsien, Richard W., Luo, Liqun
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 217
container_issue 2
container_start_page 205
container_title Neuron (Cambridge, Mass.)
container_volume 62
creator Espinosa, J. Sebastian
Wheeler, Damian G.
Tsien, Richard W.
Luo, Liqun
description N-methyl-D-aspartate receptors (NMDARs) play important functions in neural development. NR2B is the predominant NR2 subunit of NMDAR in the developing brain. Here we use mosaic analysis with double markers (MADM) to knock out NR2B in isolated single cells and analyze its cell-autonomous function in dendrite development. NR2B mutant dentate gyrus granule cells (dGCs) and barrel cortex layer 4 spiny stellate cells (bSCs) have similar dendritic growth rates, total length, and branch number as control cells. However, mutant dGCs maintain supernumerary primary dendrites resulting from a pruning defect. Furthermore, while control bSCs restrict dendritic growth to a single barrel, mutant bSCs maintain dendritic growth in multiple barrels. Thus, NR2B functions cell autonomously to regulate dendrite patterning to ensure that sensory information is properly represented in the cortex. Our study also indicates that molecular mechanisms that regulate activity-dependent dendrite patterning can be separated from those that control general dendrite growth and branching.
doi_str_mv 10.1016/j.neuron.2009.03.006
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2788338</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0896627309002050</els_id><sourcerecordid>3235467741</sourcerecordid><originalsourceid>FETCH-LOGICAL-c555t-e8291feb0f52b3750fb4ce43cde0360b18d7334771b8ebdad8861d979f029de63</originalsourceid><addsrcrecordid>eNp9kcFu1DAQhi0EokvhDRCyxDlhHCexzQFpu4UW0RYE9IZkJfak9ZLai-0U9e2b1a4oXLjMHGbmn3_mI-Qlg5IBa9-sS49TDL6sAFQJvARoH5EFAyWKmin1mCxAqrZoK8EPyLOU1gCsbhR7Sg6YqkFVbbsgPy69CdNmdP6KHqO30WWkJzH8zte085Z-6XLG6OfyW_ptjiMWKxxH-skH8zNMmS59N94ll2gY6MX58ZJ-RYObHCKtjp6TJ0M3Jnyxz4fk8sP776vT4uzzycfV8qwwTdPkAmWl2IA9DE3Vc9HA0NcGa24sAm-hZ9IKzmshWC-xt52VsmVWCTVApSy2_JC82-lupv4GrUGfYzfqTXQ3XbzToXP634p31_oq3OpKSMm5nAVe7wVi-DVhynodpjhfljRrgAvBZbXtqnddJoaUIg5_NjDQWyZ6rXdM9JaJBq5nJvPYq7_dPQztITzYx_lHtw6jTsahN2hdRJO1De7_G-4Bg8KgOg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1503773828</pqid></control><display><type>article</type><title>Uncoupling Dendrite Growth and Patterning: Single-Cell Knockout Analysis of NMDA Receptor 2B</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Espinosa, J. Sebastian ; Wheeler, Damian G. ; Tsien, Richard W. ; Luo, Liqun</creator><creatorcontrib>Espinosa, J. Sebastian ; Wheeler, Damian G. ; Tsien, Richard W. ; Luo, Liqun</creatorcontrib><description>N-methyl-D-aspartate receptors (NMDARs) play important functions in neural development. NR2B is the predominant NR2 subunit of NMDAR in the developing brain. Here we use mosaic analysis with double markers (MADM) to knock out NR2B in isolated single cells and analyze its cell-autonomous function in dendrite development. NR2B mutant dentate gyrus granule cells (dGCs) and barrel cortex layer 4 spiny stellate cells (bSCs) have similar dendritic growth rates, total length, and branch number as control cells. However, mutant dGCs maintain supernumerary primary dendrites resulting from a pruning defect. Furthermore, while control bSCs restrict dendritic growth to a single barrel, mutant bSCs maintain dendritic growth in multiple barrels. Thus, NR2B functions cell autonomously to regulate dendrite patterning to ensure that sensory information is properly represented in the cortex. Our study also indicates that molecular mechanisms that regulate activity-dependent dendrite patterning can be separated from those that control general dendrite growth and branching.</description><identifier>ISSN: 0896-6273</identifier><identifier>EISSN: 1097-4199</identifier><identifier>DOI: 10.1016/j.neuron.2009.03.006</identifier><identifier>PMID: 19409266</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Age Factors ; Animals ; Animals, Newborn ; Body Patterning - genetics ; Calcium - metabolism ; Cell Count ; CELLBIO ; Cerebral Cortex - cytology ; Dendrites - drug effects ; Dendrites - physiology ; Dentate Gyrus - cytology ; Deoxyuridine ; DEVBIO ; Embryo, Mammalian ; Gene Expression Regulation, Developmental ; Green Fluorescent Proteins - genetics ; Mice ; Mice, Knockout ; Models, Biological ; MOLNEURO ; Neurons ; Neurons - classification ; Neurons - cytology ; Neurons - drug effects ; Neurons - physiology ; Phosphopyruvate Hydratase - metabolism ; Receptors, N-Methyl-D-Aspartate - deficiency ; Receptors, N-Methyl-D-Aspartate - genetics ; Receptors, N-Methyl-D-Aspartate - physiology ; Rodents</subject><ispartof>Neuron (Cambridge, Mass.), 2009-04, Vol.62 (2), p.205-217</ispartof><rights>2009 Elsevier Inc.</rights><rights>Copyright Elsevier Limited Apr 30, 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c555t-e8291feb0f52b3750fb4ce43cde0360b18d7334771b8ebdad8861d979f029de63</citedby><cites>FETCH-LOGICAL-c555t-e8291feb0f52b3750fb4ce43cde0360b18d7334771b8ebdad8861d979f029de63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0896627309002050$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19409266$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Espinosa, J. Sebastian</creatorcontrib><creatorcontrib>Wheeler, Damian G.</creatorcontrib><creatorcontrib>Tsien, Richard W.</creatorcontrib><creatorcontrib>Luo, Liqun</creatorcontrib><title>Uncoupling Dendrite Growth and Patterning: Single-Cell Knockout Analysis of NMDA Receptor 2B</title><title>Neuron (Cambridge, Mass.)</title><addtitle>Neuron</addtitle><description>N-methyl-D-aspartate receptors (NMDARs) play important functions in neural development. NR2B is the predominant NR2 subunit of NMDAR in the developing brain. Here we use mosaic analysis with double markers (MADM) to knock out NR2B in isolated single cells and analyze its cell-autonomous function in dendrite development. NR2B mutant dentate gyrus granule cells (dGCs) and barrel cortex layer 4 spiny stellate cells (bSCs) have similar dendritic growth rates, total length, and branch number as control cells. However, mutant dGCs maintain supernumerary primary dendrites resulting from a pruning defect. Furthermore, while control bSCs restrict dendritic growth to a single barrel, mutant bSCs maintain dendritic growth in multiple barrels. Thus, NR2B functions cell autonomously to regulate dendrite patterning to ensure that sensory information is properly represented in the cortex. Our study also indicates that molecular mechanisms that regulate activity-dependent dendrite patterning can be separated from those that control general dendrite growth and branching.</description><subject>Age Factors</subject><subject>Animals</subject><subject>Animals, Newborn</subject><subject>Body Patterning - genetics</subject><subject>Calcium - metabolism</subject><subject>Cell Count</subject><subject>CELLBIO</subject><subject>Cerebral Cortex - cytology</subject><subject>Dendrites - drug effects</subject><subject>Dendrites - physiology</subject><subject>Dentate Gyrus - cytology</subject><subject>Deoxyuridine</subject><subject>DEVBIO</subject><subject>Embryo, Mammalian</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Green Fluorescent Proteins - genetics</subject><subject>Mice</subject><subject>Mice, Knockout</subject><subject>Models, Biological</subject><subject>MOLNEURO</subject><subject>Neurons</subject><subject>Neurons - classification</subject><subject>Neurons - cytology</subject><subject>Neurons - drug effects</subject><subject>Neurons - physiology</subject><subject>Phosphopyruvate Hydratase - metabolism</subject><subject>Receptors, N-Methyl-D-Aspartate - deficiency</subject><subject>Receptors, N-Methyl-D-Aspartate - genetics</subject><subject>Receptors, N-Methyl-D-Aspartate - physiology</subject><subject>Rodents</subject><issn>0896-6273</issn><issn>1097-4199</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kcFu1DAQhi0EokvhDRCyxDlhHCexzQFpu4UW0RYE9IZkJfak9ZLai-0U9e2b1a4oXLjMHGbmn3_mI-Qlg5IBa9-sS49TDL6sAFQJvARoH5EFAyWKmin1mCxAqrZoK8EPyLOU1gCsbhR7Sg6YqkFVbbsgPy69CdNmdP6KHqO30WWkJzH8zte085Z-6XLG6OfyW_ptjiMWKxxH-skH8zNMmS59N94ll2gY6MX58ZJ-RYObHCKtjp6TJ0M3Jnyxz4fk8sP776vT4uzzycfV8qwwTdPkAmWl2IA9DE3Vc9HA0NcGa24sAm-hZ9IKzmshWC-xt52VsmVWCTVApSy2_JC82-lupv4GrUGfYzfqTXQ3XbzToXP634p31_oq3OpKSMm5nAVe7wVi-DVhynodpjhfljRrgAvBZbXtqnddJoaUIg5_NjDQWyZ6rXdM9JaJBq5nJvPYq7_dPQztITzYx_lHtw6jTsahN2hdRJO1De7_G-4Bg8KgOg</recordid><startdate>20090430</startdate><enddate>20090430</enddate><creator>Espinosa, J. Sebastian</creator><creator>Wheeler, Damian G.</creator><creator>Tsien, Richard W.</creator><creator>Luo, Liqun</creator><general>Elsevier Inc</general><general>Elsevier Limited</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7QR</scope><scope>7TK</scope><scope>8FD</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20090430</creationdate><title>Uncoupling Dendrite Growth and Patterning: Single-Cell Knockout Analysis of NMDA Receptor 2B</title><author>Espinosa, J. Sebastian ; Wheeler, Damian G. ; Tsien, Richard W. ; Luo, Liqun</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c555t-e8291feb0f52b3750fb4ce43cde0360b18d7334771b8ebdad8861d979f029de63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Age Factors</topic><topic>Animals</topic><topic>Animals, Newborn</topic><topic>Body Patterning - genetics</topic><topic>Calcium - metabolism</topic><topic>Cell Count</topic><topic>CELLBIO</topic><topic>Cerebral Cortex - cytology</topic><topic>Dendrites - drug effects</topic><topic>Dendrites - physiology</topic><topic>Dentate Gyrus - cytology</topic><topic>Deoxyuridine</topic><topic>DEVBIO</topic><topic>Embryo, Mammalian</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Green Fluorescent Proteins - genetics</topic><topic>Mice</topic><topic>Mice, Knockout</topic><topic>Models, Biological</topic><topic>MOLNEURO</topic><topic>Neurons</topic><topic>Neurons - classification</topic><topic>Neurons - cytology</topic><topic>Neurons - drug effects</topic><topic>Neurons - physiology</topic><topic>Phosphopyruvate Hydratase - metabolism</topic><topic>Receptors, N-Methyl-D-Aspartate - deficiency</topic><topic>Receptors, N-Methyl-D-Aspartate - genetics</topic><topic>Receptors, N-Methyl-D-Aspartate - physiology</topic><topic>Rodents</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Espinosa, J. Sebastian</creatorcontrib><creatorcontrib>Wheeler, Damian G.</creatorcontrib><creatorcontrib>Tsien, Richard W.</creatorcontrib><creatorcontrib>Luo, Liqun</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Neuron (Cambridge, Mass.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Espinosa, J. Sebastian</au><au>Wheeler, Damian G.</au><au>Tsien, Richard W.</au><au>Luo, Liqun</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Uncoupling Dendrite Growth and Patterning: Single-Cell Knockout Analysis of NMDA Receptor 2B</atitle><jtitle>Neuron (Cambridge, Mass.)</jtitle><addtitle>Neuron</addtitle><date>2009-04-30</date><risdate>2009</risdate><volume>62</volume><issue>2</issue><spage>205</spage><epage>217</epage><pages>205-217</pages><issn>0896-6273</issn><eissn>1097-4199</eissn><abstract>N-methyl-D-aspartate receptors (NMDARs) play important functions in neural development. NR2B is the predominant NR2 subunit of NMDAR in the developing brain. Here we use mosaic analysis with double markers (MADM) to knock out NR2B in isolated single cells and analyze its cell-autonomous function in dendrite development. NR2B mutant dentate gyrus granule cells (dGCs) and barrel cortex layer 4 spiny stellate cells (bSCs) have similar dendritic growth rates, total length, and branch number as control cells. However, mutant dGCs maintain supernumerary primary dendrites resulting from a pruning defect. Furthermore, while control bSCs restrict dendritic growth to a single barrel, mutant bSCs maintain dendritic growth in multiple barrels. Thus, NR2B functions cell autonomously to regulate dendrite patterning to ensure that sensory information is properly represented in the cortex. Our study also indicates that molecular mechanisms that regulate activity-dependent dendrite patterning can be separated from those that control general dendrite growth and branching.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19409266</pmid><doi>10.1016/j.neuron.2009.03.006</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0896-6273
ispartof Neuron (Cambridge, Mass.), 2009-04, Vol.62 (2), p.205-217
issn 0896-6273
1097-4199
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2788338
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals
subjects Age Factors
Animals
Animals, Newborn
Body Patterning - genetics
Calcium - metabolism
Cell Count
CELLBIO
Cerebral Cortex - cytology
Dendrites - drug effects
Dendrites - physiology
Dentate Gyrus - cytology
Deoxyuridine
DEVBIO
Embryo, Mammalian
Gene Expression Regulation, Developmental
Green Fluorescent Proteins - genetics
Mice
Mice, Knockout
Models, Biological
MOLNEURO
Neurons
Neurons - classification
Neurons - cytology
Neurons - drug effects
Neurons - physiology
Phosphopyruvate Hydratase - metabolism
Receptors, N-Methyl-D-Aspartate - deficiency
Receptors, N-Methyl-D-Aspartate - genetics
Receptors, N-Methyl-D-Aspartate - physiology
Rodents
title Uncoupling Dendrite Growth and Patterning: Single-Cell Knockout Analysis of NMDA Receptor 2B
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T00%3A06%3A53IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Uncoupling%20Dendrite%20Growth%20and%20Patterning:%20Single-Cell%20Knockout%20Analysis%20of%20NMDA%20Receptor%202B&rft.jtitle=Neuron%20(Cambridge,%20Mass.)&rft.au=Espinosa,%20J.%20Sebastian&rft.date=2009-04-30&rft.volume=62&rft.issue=2&rft.spage=205&rft.epage=217&rft.pages=205-217&rft.issn=0896-6273&rft.eissn=1097-4199&rft_id=info:doi/10.1016/j.neuron.2009.03.006&rft_dat=%3Cproquest_pubme%3E3235467741%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1503773828&rft_id=info:pmid/19409266&rft_els_id=S0896627309002050&rfr_iscdi=true