3D Topology Preserving Flows for Viewpoint-Based Cortical Unfolding
We present a variational method for unfolding of the cortex based on a user-chosen point of view as an alternative to more traditional global flattening methods, which incur more distortion around the region of interest. Our approach involves three novel contributions. The first is an energy functio...
Gespeichert in:
Veröffentlicht in: | International journal of computer vision 2009-12, Vol.85 (3), p.223-236 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 236 |
---|---|
container_issue | 3 |
container_start_page | 223 |
container_title | International journal of computer vision |
container_volume | 85 |
creator | Rocha, Kelvin R. Sundaramoorthi, Ganesh Yezzi, Anthony J. Prince, Jerry L. |
description | We present a variational method for unfolding of the cortex based on a user-chosen point of view as an alternative to more traditional global flattening methods, which incur more distortion around the region of interest. Our approach involves three novel contributions. The first is an energy function and its corresponding gradient flow to measure the average visibility of a region of interest of a surface with respect to a given viewpoint. The second is an additional energy function and flow designed to preserve the 3D topology of the evolving surface. The third is a method that dramatically improves the computational speed of the 3D topology preservation approach by creating a tree structure of the 3D surface and using a recursion technique. Experiments results show that the proposed approach can successfully unfold highly convoluted surfaces such as the cortex while preserving their topology during the evolution. |
doi_str_mv | 10.1007/s11263-009-0214-4 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2786089</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1835548148</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-d5f28245daddaecc24bdf65aad3322002ad773869662e5e412caba06609d10b13</originalsourceid><addsrcrecordid>eNp9kU1PGzEQhq0KVAL0B_SCVuJQLqYz_tr1pRKkfElI7SFwtZy1NyzarFN7E5R_j6NELVRqTz7MM-_M-CHkM8I5ApRfEyJTnAJoCgwFFR_ICGXJKQqQe2QEmgGVSuMBOUzpGQBYxfhHcoBaK0CQIzLm34tJWIQuzNbFz-iTj6u2nxXXXXhJRRNi8dj6l0Vo-4Fe2uRdMQ5xaGvbFQ99EzqX4WOy39gu-U-794g8XF9Nxrf0_sfN3fjintZCioE62eTxQjrrnPV1zcTUNUpa6zhnLO9mXVnySmmlmJdeIKvt1IJSoB3CFPkR-bbNXSync-9q3w_RdmYR27mNaxNsa95X-vbJzMLKsLJSUOkc8GUXEMOvpU-Dmbep9l1nex-WyZSSKw2cVZk8-y-JFZdSVCg26Olf6HNYxj5_hEFErhgvpcoUbqk6hpSib36vjWA2Ms1WpskyzUamEbnn5O29fzp29jLAtkDKpX7m45vR_0x9BTq6qU8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1113623756</pqid></control><display><type>article</type><title>3D Topology Preserving Flows for Viewpoint-Based Cortical Unfolding</title><source>SpringerNature Journals</source><creator>Rocha, Kelvin R. ; Sundaramoorthi, Ganesh ; Yezzi, Anthony J. ; Prince, Jerry L.</creator><creatorcontrib>Rocha, Kelvin R. ; Sundaramoorthi, Ganesh ; Yezzi, Anthony J. ; Prince, Jerry L.</creatorcontrib><description>We present a variational method for unfolding of the cortex based on a user-chosen point of view as an alternative to more traditional global flattening methods, which incur more distortion around the region of interest. Our approach involves three novel contributions. The first is an energy function and its corresponding gradient flow to measure the average visibility of a region of interest of a surface with respect to a given viewpoint. The second is an additional energy function and flow designed to preserve the 3D topology of the evolving surface. The third is a method that dramatically improves the computational speed of the 3D topology preservation approach by creating a tree structure of the 3D surface and using a recursion technique. Experiments results show that the proposed approach can successfully unfold highly convoluted surfaces such as the cortex while preserving their topology during the evolution.</description><identifier>ISSN: 0920-5691</identifier><identifier>EISSN: 1573-1405</identifier><identifier>DOI: 10.1007/s11263-009-0214-4</identifier><identifier>PMID: 19960105</identifier><language>eng</language><publisher>Boston: Springer US</publisher><subject>Artificial Intelligence ; Computer Imaging ; Computer Science ; Cortexes ; Image Processing and Computer Vision ; Mathematical analysis ; Mathematical models ; Pattern Recognition ; Pattern Recognition and Graphics ; Preserves ; Preserving ; Studies ; Three dimensional ; Topology ; Variational methods ; Vision</subject><ispartof>International journal of computer vision, 2009-12, Vol.85 (3), p.223-236</ispartof><rights>Springer Science+Business Media, LLC 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c454t-d5f28245daddaecc24bdf65aad3322002ad773869662e5e412caba06609d10b13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s11263-009-0214-4$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s11263-009-0214-4$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19960105$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Rocha, Kelvin R.</creatorcontrib><creatorcontrib>Sundaramoorthi, Ganesh</creatorcontrib><creatorcontrib>Yezzi, Anthony J.</creatorcontrib><creatorcontrib>Prince, Jerry L.</creatorcontrib><title>3D Topology Preserving Flows for Viewpoint-Based Cortical Unfolding</title><title>International journal of computer vision</title><addtitle>Int J Comput Vis</addtitle><addtitle>Int J Comput Vis</addtitle><description>We present a variational method for unfolding of the cortex based on a user-chosen point of view as an alternative to more traditional global flattening methods, which incur more distortion around the region of interest. Our approach involves three novel contributions. The first is an energy function and its corresponding gradient flow to measure the average visibility of a region of interest of a surface with respect to a given viewpoint. The second is an additional energy function and flow designed to preserve the 3D topology of the evolving surface. The third is a method that dramatically improves the computational speed of the 3D topology preservation approach by creating a tree structure of the 3D surface and using a recursion technique. Experiments results show that the proposed approach can successfully unfold highly convoluted surfaces such as the cortex while preserving their topology during the evolution.</description><subject>Artificial Intelligence</subject><subject>Computer Imaging</subject><subject>Computer Science</subject><subject>Cortexes</subject><subject>Image Processing and Computer Vision</subject><subject>Mathematical analysis</subject><subject>Mathematical models</subject><subject>Pattern Recognition</subject><subject>Pattern Recognition and Graphics</subject><subject>Preserves</subject><subject>Preserving</subject><subject>Studies</subject><subject>Three dimensional</subject><subject>Topology</subject><subject>Variational methods</subject><subject>Vision</subject><issn>0920-5691</issn><issn>1573-1405</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kU1PGzEQhq0KVAL0B_SCVuJQLqYz_tr1pRKkfElI7SFwtZy1NyzarFN7E5R_j6NELVRqTz7MM-_M-CHkM8I5ApRfEyJTnAJoCgwFFR_ICGXJKQqQe2QEmgGVSuMBOUzpGQBYxfhHcoBaK0CQIzLm34tJWIQuzNbFz-iTj6u2nxXXXXhJRRNi8dj6l0Vo-4Fe2uRdMQ5xaGvbFQ99EzqX4WOy39gu-U-794g8XF9Nxrf0_sfN3fjintZCioE62eTxQjrrnPV1zcTUNUpa6zhnLO9mXVnySmmlmJdeIKvt1IJSoB3CFPkR-bbNXSync-9q3w_RdmYR27mNaxNsa95X-vbJzMLKsLJSUOkc8GUXEMOvpU-Dmbep9l1nex-WyZSSKw2cVZk8-y-JFZdSVCg26Olf6HNYxj5_hEFErhgvpcoUbqk6hpSib36vjWA2Ms1WpskyzUamEbnn5O29fzp29jLAtkDKpX7m45vR_0x9BTq6qU8</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Rocha, Kelvin R.</creator><creator>Sundaramoorthi, Ganesh</creator><creator>Yezzi, Anthony J.</creator><creator>Prince, Jerry L.</creator><general>Springer US</general><general>Springer Nature B.V</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7WY</scope><scope>7WZ</scope><scope>7XB</scope><scope>87Z</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8FL</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BEZIV</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FRNLG</scope><scope>F~G</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K60</scope><scope>K6~</scope><scope>K7-</scope><scope>L.-</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0C</scope><scope>M0N</scope><scope>P5Z</scope><scope>P62</scope><scope>PQBIZ</scope><scope>PQBZA</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYYUZ</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091201</creationdate><title>3D Topology Preserving Flows for Viewpoint-Based Cortical Unfolding</title><author>Rocha, Kelvin R. ; Sundaramoorthi, Ganesh ; Yezzi, Anthony J. ; Prince, Jerry L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-d5f28245daddaecc24bdf65aad3322002ad773869662e5e412caba06609d10b13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Artificial Intelligence</topic><topic>Computer Imaging</topic><topic>Computer Science</topic><topic>Cortexes</topic><topic>Image Processing and Computer Vision</topic><topic>Mathematical analysis</topic><topic>Mathematical models</topic><topic>Pattern Recognition</topic><topic>Pattern Recognition and Graphics</topic><topic>Preserves</topic><topic>Preserving</topic><topic>Studies</topic><topic>Three dimensional</topic><topic>Topology</topic><topic>Variational methods</topic><topic>Vision</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rocha, Kelvin R.</creatorcontrib><creatorcontrib>Sundaramoorthi, Ganesh</creatorcontrib><creatorcontrib>Yezzi, Anthony J.</creatorcontrib><creatorcontrib>Prince, Jerry L.</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Access via ABI/INFORM (ProQuest)</collection><collection>ABI/INFORM Global (PDF only)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ABI/INFORM Global (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ABI/INFORM Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Business Premium Collection</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Business Premium Collection (Alumni)</collection><collection>ABI/INFORM Global (Corporate)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Business Collection (Alumni Edition)</collection><collection>ProQuest Business Collection</collection><collection>Computer Science Database</collection><collection>ABI/INFORM Professional Advanced</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>ABI/INFORM Global</collection><collection>Computing Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>ProQuest One Business</collection><collection>ProQuest One Business (Alumni)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ABI/INFORM Collection China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>International journal of computer vision</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rocha, Kelvin R.</au><au>Sundaramoorthi, Ganesh</au><au>Yezzi, Anthony J.</au><au>Prince, Jerry L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>3D Topology Preserving Flows for Viewpoint-Based Cortical Unfolding</atitle><jtitle>International journal of computer vision</jtitle><stitle>Int J Comput Vis</stitle><addtitle>Int J Comput Vis</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>85</volume><issue>3</issue><spage>223</spage><epage>236</epage><pages>223-236</pages><issn>0920-5691</issn><eissn>1573-1405</eissn><abstract>We present a variational method for unfolding of the cortex based on a user-chosen point of view as an alternative to more traditional global flattening methods, which incur more distortion around the region of interest. Our approach involves three novel contributions. The first is an energy function and its corresponding gradient flow to measure the average visibility of a region of interest of a surface with respect to a given viewpoint. The second is an additional energy function and flow designed to preserve the 3D topology of the evolving surface. The third is a method that dramatically improves the computational speed of the 3D topology preservation approach by creating a tree structure of the 3D surface and using a recursion technique. Experiments results show that the proposed approach can successfully unfold highly convoluted surfaces such as the cortex while preserving their topology during the evolution.</abstract><cop>Boston</cop><pub>Springer US</pub><pmid>19960105</pmid><doi>10.1007/s11263-009-0214-4</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-5691 |
ispartof | International journal of computer vision, 2009-12, Vol.85 (3), p.223-236 |
issn | 0920-5691 1573-1405 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2786089 |
source | SpringerNature Journals |
subjects | Artificial Intelligence Computer Imaging Computer Science Cortexes Image Processing and Computer Vision Mathematical analysis Mathematical models Pattern Recognition Pattern Recognition and Graphics Preserves Preserving Studies Three dimensional Topology Variational methods Vision |
title | 3D Topology Preserving Flows for Viewpoint-Based Cortical Unfolding |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T01%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=3D%20Topology%20Preserving%20Flows%20for%20Viewpoint-Based%20Cortical%20Unfolding&rft.jtitle=International%20journal%20of%20computer%20vision&rft.au=Rocha,%20Kelvin%20R.&rft.date=2009-12-01&rft.volume=85&rft.issue=3&rft.spage=223&rft.epage=236&rft.pages=223-236&rft.issn=0920-5691&rft.eissn=1573-1405&rft_id=info:doi/10.1007/s11263-009-0214-4&rft_dat=%3Cproquest_pubme%3E1835548148%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1113623756&rft_id=info:pmid/19960105&rfr_iscdi=true |