Genetic Resources for Maize Cell Wall Biology
Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins...
Gespeichert in:
Veröffentlicht in: | Plant physiology (Bethesda) 2009-12, Vol.151 (4), p.1703-1728 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1728 |
---|---|
container_issue | 4 |
container_start_page | 1703 |
container_title | Plant physiology (Bethesda) |
container_volume | 151 |
creator | Penning, Bryan W Hunter, Charles T. III Tayengwa, Reuben Eveland, Andrea L Dugard, Christopher K Olek, Anna T Vermerris, Wilfred Koch, Karen E McCarty, Donald R Davis, Mark F Thomas, Steven R McCann, Maureen C Carpita, Nicholas C |
description | Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions. |
doi_str_mv | 10.1104/pp.109.136804 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2785990</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>40537611</jstor_id><sourcerecordid>40537611</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-c5ccaf4b9159867a6146f089609a2262cd017ad349a3f3d98db34d6320df07933</originalsourceid><addsrcrecordid>eNpVkUtLAzEURoMoWqtLl-psXE69ec5kI2jxBRVBLS5DmknqyLQZkqmgv97IlKqbmwvfyRc4QegIwwhjYOdtO8IgR5iKEtgWGmBOSU44K7fRACDtUJZyD-3H-A4AmGK2i_awlCTxZIDyW7u0XW2yJxv9KhgbM-dD9qDrL5uNbdNkrzqNq9o3fv55gHacbqI9XJ9DNL25fhnf5ZPH2_vx5SQ3XPAuTWO0YzOJuSxFoQVmwkEpBUhNiCCmAlzoijKpqaOVLKsZZZWgBCoHhaR0iC763nY1W9jK2GUXdKPaUC90-FRe1-p_sqzf1Nx_KFKUXEpIBXlfYIKPMVi3uYtB_XhTbZtWqXpviT_5--AvvRaVgLM1oKPRjQt6aeq44QghlHPKE3fcc--x82GTM-C0EBin_LTPnfZKz0PqmD6T9C_JCE6KJP0Go2OHbw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Genetic Resources for Maize Cell Wall Biology</title><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><creator>Penning, Bryan W ; Hunter, Charles T. III ; Tayengwa, Reuben ; Eveland, Andrea L ; Dugard, Christopher K ; Olek, Anna T ; Vermerris, Wilfred ; Koch, Karen E ; McCarty, Donald R ; Davis, Mark F ; Thomas, Steven R ; McCann, Maureen C ; Carpita, Nicholas C</creator><creatorcontrib>Penning, Bryan W ; Hunter, Charles T. III ; Tayengwa, Reuben ; Eveland, Andrea L ; Dugard, Christopher K ; Olek, Anna T ; Vermerris, Wilfred ; Koch, Karen E ; McCarty, Donald R ; Davis, Mark F ; Thomas, Steven R ; McCann, Maureen C ; Carpita, Nicholas C</creatorcontrib><description>Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.</description><identifier>ISSN: 0032-0889</identifier><identifier>ISSN: 1532-2548</identifier><identifier>EISSN: 1532-2548</identifier><identifier>DOI: 10.1104/pp.109.136804</identifier><identifier>PMID: 19926802</identifier><identifier>CODEN: PPHYA5</identifier><language>eng</language><publisher>Rockville, MD: American Society of Plant Biologists</publisher><subject>Agronomy. Soil science and plant productions ; Arabidopsis - genetics ; Biological and medical sciences ; Biosynthesis ; Carbohydrate Metabolism - genetics ; Carbohydrates - biosynthesis ; Cell Wall - genetics ; Cell Wall - physiology ; Cell walls ; Corn ; DNA Transposable Elements - genetics ; Flowers - genetics ; Fundamental and applied biological sciences. Psychology ; Gene Expression Profiling ; Gene Expression Regulation, Plant ; Generalities. Genetics. Plant material ; Genes ; Genes, Plant - genetics ; Genetic resources, diversity ; Genetic screening ; Genetics and breeding of economic plants ; Genome Analysis ; Genomes ; Metabolic Networks and Pathways - genetics ; Molecular Sequence Data ; Multigene Family - genetics ; Mutagenesis, Insertional - genetics ; Mutation - genetics ; Nucleotides - metabolism ; Oryza - genetics ; Ovaries ; Phenotype ; Plant cells ; Plant material ; Plant physiology and development ; Plants ; Propanols - metabolism ; Rice ; Substrate Specificity - genetics ; Zea mays - cytology ; Zea mays - genetics</subject><ispartof>Plant physiology (Bethesda), 2009-12, Vol.151 (4), p.1703-1728</ispartof><rights>Copyright 2009 American Society of Plant Biologists</rights><rights>2015 INIST-CNRS</rights><rights>Copyright © 2009, American Society of Plant Biologists 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-c5ccaf4b9159867a6146f089609a2262cd017ad349a3f3d98db34d6320df07933</citedby><cites>FETCH-LOGICAL-c565t-c5ccaf4b9159867a6146f089609a2262cd017ad349a3f3d98db34d6320df07933</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/40537611$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/40537611$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22235535$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19926802$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Penning, Bryan W</creatorcontrib><creatorcontrib>Hunter, Charles T. III</creatorcontrib><creatorcontrib>Tayengwa, Reuben</creatorcontrib><creatorcontrib>Eveland, Andrea L</creatorcontrib><creatorcontrib>Dugard, Christopher K</creatorcontrib><creatorcontrib>Olek, Anna T</creatorcontrib><creatorcontrib>Vermerris, Wilfred</creatorcontrib><creatorcontrib>Koch, Karen E</creatorcontrib><creatorcontrib>McCarty, Donald R</creatorcontrib><creatorcontrib>Davis, Mark F</creatorcontrib><creatorcontrib>Thomas, Steven R</creatorcontrib><creatorcontrib>McCann, Maureen C</creatorcontrib><creatorcontrib>Carpita, Nicholas C</creatorcontrib><title>Genetic Resources for Maize Cell Wall Biology</title><title>Plant physiology (Bethesda)</title><addtitle>Plant Physiol</addtitle><description>Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.</description><subject>Agronomy. Soil science and plant productions</subject><subject>Arabidopsis - genetics</subject><subject>Biological and medical sciences</subject><subject>Biosynthesis</subject><subject>Carbohydrate Metabolism - genetics</subject><subject>Carbohydrates - biosynthesis</subject><subject>Cell Wall - genetics</subject><subject>Cell Wall - physiology</subject><subject>Cell walls</subject><subject>Corn</subject><subject>DNA Transposable Elements - genetics</subject><subject>Flowers - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Profiling</subject><subject>Gene Expression Regulation, Plant</subject><subject>Generalities. Genetics. Plant material</subject><subject>Genes</subject><subject>Genes, Plant - genetics</subject><subject>Genetic resources, diversity</subject><subject>Genetic screening</subject><subject>Genetics and breeding of economic plants</subject><subject>Genome Analysis</subject><subject>Genomes</subject><subject>Metabolic Networks and Pathways - genetics</subject><subject>Molecular Sequence Data</subject><subject>Multigene Family - genetics</subject><subject>Mutagenesis, Insertional - genetics</subject><subject>Mutation - genetics</subject><subject>Nucleotides - metabolism</subject><subject>Oryza - genetics</subject><subject>Ovaries</subject><subject>Phenotype</subject><subject>Plant cells</subject><subject>Plant material</subject><subject>Plant physiology and development</subject><subject>Plants</subject><subject>Propanols - metabolism</subject><subject>Rice</subject><subject>Substrate Specificity - genetics</subject><subject>Zea mays - cytology</subject><subject>Zea mays - genetics</subject><issn>0032-0889</issn><issn>1532-2548</issn><issn>1532-2548</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkUtLAzEURoMoWqtLl-psXE69ec5kI2jxBRVBLS5DmknqyLQZkqmgv97IlKqbmwvfyRc4QegIwwhjYOdtO8IgR5iKEtgWGmBOSU44K7fRACDtUJZyD-3H-A4AmGK2i_awlCTxZIDyW7u0XW2yJxv9KhgbM-dD9qDrL5uNbdNkrzqNq9o3fv55gHacbqI9XJ9DNL25fhnf5ZPH2_vx5SQ3XPAuTWO0YzOJuSxFoQVmwkEpBUhNiCCmAlzoijKpqaOVLKsZZZWgBCoHhaR0iC763nY1W9jK2GUXdKPaUC90-FRe1-p_sqzf1Nx_KFKUXEpIBXlfYIKPMVi3uYtB_XhTbZtWqXpviT_5--AvvRaVgLM1oKPRjQt6aeq44QghlHPKE3fcc--x82GTM-C0EBin_LTPnfZKz0PqmD6T9C_JCE6KJP0Go2OHbw</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Penning, Bryan W</creator><creator>Hunter, Charles T. III</creator><creator>Tayengwa, Reuben</creator><creator>Eveland, Andrea L</creator><creator>Dugard, Christopher K</creator><creator>Olek, Anna T</creator><creator>Vermerris, Wilfred</creator><creator>Koch, Karen E</creator><creator>McCarty, Donald R</creator><creator>Davis, Mark F</creator><creator>Thomas, Steven R</creator><creator>McCann, Maureen C</creator><creator>Carpita, Nicholas C</creator><general>American Society of Plant Biologists</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20091201</creationdate><title>Genetic Resources for Maize Cell Wall Biology</title><author>Penning, Bryan W ; Hunter, Charles T. III ; Tayengwa, Reuben ; Eveland, Andrea L ; Dugard, Christopher K ; Olek, Anna T ; Vermerris, Wilfred ; Koch, Karen E ; McCarty, Donald R ; Davis, Mark F ; Thomas, Steven R ; McCann, Maureen C ; Carpita, Nicholas C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-c5ccaf4b9159867a6146f089609a2262cd017ad349a3f3d98db34d6320df07933</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Agronomy. Soil science and plant productions</topic><topic>Arabidopsis - genetics</topic><topic>Biological and medical sciences</topic><topic>Biosynthesis</topic><topic>Carbohydrate Metabolism - genetics</topic><topic>Carbohydrates - biosynthesis</topic><topic>Cell Wall - genetics</topic><topic>Cell Wall - physiology</topic><topic>Cell walls</topic><topic>Corn</topic><topic>DNA Transposable Elements - genetics</topic><topic>Flowers - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Profiling</topic><topic>Gene Expression Regulation, Plant</topic><topic>Generalities. Genetics. Plant material</topic><topic>Genes</topic><topic>Genes, Plant - genetics</topic><topic>Genetic resources, diversity</topic><topic>Genetic screening</topic><topic>Genetics and breeding of economic plants</topic><topic>Genome Analysis</topic><topic>Genomes</topic><topic>Metabolic Networks and Pathways - genetics</topic><topic>Molecular Sequence Data</topic><topic>Multigene Family - genetics</topic><topic>Mutagenesis, Insertional - genetics</topic><topic>Mutation - genetics</topic><topic>Nucleotides - metabolism</topic><topic>Oryza - genetics</topic><topic>Ovaries</topic><topic>Phenotype</topic><topic>Plant cells</topic><topic>Plant material</topic><topic>Plant physiology and development</topic><topic>Plants</topic><topic>Propanols - metabolism</topic><topic>Rice</topic><topic>Substrate Specificity - genetics</topic><topic>Zea mays - cytology</topic><topic>Zea mays - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Penning, Bryan W</creatorcontrib><creatorcontrib>Hunter, Charles T. III</creatorcontrib><creatorcontrib>Tayengwa, Reuben</creatorcontrib><creatorcontrib>Eveland, Andrea L</creatorcontrib><creatorcontrib>Dugard, Christopher K</creatorcontrib><creatorcontrib>Olek, Anna T</creatorcontrib><creatorcontrib>Vermerris, Wilfred</creatorcontrib><creatorcontrib>Koch, Karen E</creatorcontrib><creatorcontrib>McCarty, Donald R</creatorcontrib><creatorcontrib>Davis, Mark F</creatorcontrib><creatorcontrib>Thomas, Steven R</creatorcontrib><creatorcontrib>McCann, Maureen C</creatorcontrib><creatorcontrib>Carpita, Nicholas C</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Plant physiology (Bethesda)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Penning, Bryan W</au><au>Hunter, Charles T. III</au><au>Tayengwa, Reuben</au><au>Eveland, Andrea L</au><au>Dugard, Christopher K</au><au>Olek, Anna T</au><au>Vermerris, Wilfred</au><au>Koch, Karen E</au><au>McCarty, Donald R</au><au>Davis, Mark F</au><au>Thomas, Steven R</au><au>McCann, Maureen C</au><au>Carpita, Nicholas C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genetic Resources for Maize Cell Wall Biology</atitle><jtitle>Plant physiology (Bethesda)</jtitle><addtitle>Plant Physiol</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>151</volume><issue>4</issue><spage>1703</spage><epage>1728</epage><pages>1703-1728</pages><issn>0032-0889</issn><issn>1532-2548</issn><eissn>1532-2548</eissn><coden>PPHYA5</coden><abstract>Grass species represent a major source of food, feed, and fiber crops and potential feedstocks for biofuel production. Most of the biomass is contributed by cell walls that are distinct in composition from all other flowering plants. Identifying cell wall-related genes and their functions underpins a fundamental understanding of growth and development in these species. Toward this goal, we are building a knowledge base of the maize (Zea mays) genes involved in cell wall biology, their expression profiles, and the phenotypic consequences of mutation. Over 750 maize genes were annotated and assembled into gene families predicted to function in cell wall biogenesis. Comparative genomics of maize, rice (Oryza sativa), and Arabidopsis (Arabidopsis thaliana) sequences reveal differences in gene family structure between grass species and a reference eudicot species. Analysis of transcript profile data for cell wall genes in developing maize ovaries revealed that expression within families differed by up to 100-fold. When transcriptional analyses of developing ovaries before pollination from Arabidopsis, rice, and maize were contrasted, distinct sets of cell wall genes were expressed in grasses. These differences in gene family structure and expression between Arabidopsis and the grasses underscore the requirement for a grass-specific genetic model for functional analyses. A UniformMu population proved to be an important resource in both forward- and reverse-genetics approaches to identify hundreds of mutants in cell wall genes. A forward screen of field-grown lines by near-infrared spectroscopic screen of mature leaves yielded several dozen lines with heritable spectroscopic phenotypes. Pyrolysis-molecular beam mass spectrometry confirmed that several nir mutants had altered carbohydrate-lignin compositions.</abstract><cop>Rockville, MD</cop><pub>American Society of Plant Biologists</pub><pmid>19926802</pmid><doi>10.1104/pp.109.136804</doi><tpages>26</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0032-0889 |
ispartof | Plant physiology (Bethesda), 2009-12, Vol.151 (4), p.1703-1728 |
issn | 0032-0889 1532-2548 1532-2548 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2785990 |
source | Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals |
subjects | Agronomy. Soil science and plant productions Arabidopsis - genetics Biological and medical sciences Biosynthesis Carbohydrate Metabolism - genetics Carbohydrates - biosynthesis Cell Wall - genetics Cell Wall - physiology Cell walls Corn DNA Transposable Elements - genetics Flowers - genetics Fundamental and applied biological sciences. Psychology Gene Expression Profiling Gene Expression Regulation, Plant Generalities. Genetics. Plant material Genes Genes, Plant - genetics Genetic resources, diversity Genetic screening Genetics and breeding of economic plants Genome Analysis Genomes Metabolic Networks and Pathways - genetics Molecular Sequence Data Multigene Family - genetics Mutagenesis, Insertional - genetics Mutation - genetics Nucleotides - metabolism Oryza - genetics Ovaries Phenotype Plant cells Plant material Plant physiology and development Plants Propanols - metabolism Rice Substrate Specificity - genetics Zea mays - cytology Zea mays - genetics |
title | Genetic Resources for Maize Cell Wall Biology |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T15%3A27%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genetic%20Resources%20for%20Maize%20Cell%20Wall%20Biology&rft.jtitle=Plant%20physiology%20(Bethesda)&rft.au=Penning,%20Bryan%20W&rft.date=2009-12-01&rft.volume=151&rft.issue=4&rft.spage=1703&rft.epage=1728&rft.pages=1703-1728&rft.issn=0032-0889&rft.eissn=1532-2548&rft.coden=PPHYA5&rft_id=info:doi/10.1104/pp.109.136804&rft_dat=%3Cjstor_pubme%3E40537611%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19926802&rft_jstor_id=40537611&rfr_iscdi=true |