Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites
The multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of Vibrio cholerae causes destruction of the actin cytoskeleton by covalent cross-linking of actin and inactivation of Rho GTPases. The effector domains responsible for these activities are here shown to be independent proteins releas...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2009-09, Vol.284 (39), p.26557-26568 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 26568 |
---|---|
container_issue | 39 |
container_start_page | 26557 |
container_title | The Journal of biological chemistry |
container_volume | 284 |
creator | Prochazkova, Katerina Shuvalova, Ludmilla A. Minasov, George Voburka, Zdeněk Anderson, Wayne F. Satchell, Karla J.F. |
description | The multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of Vibrio cholerae causes destruction of the actin cytoskeleton by covalent cross-linking of actin and inactivation of Rho GTPases. The effector domains responsible for these activities are here shown to be independent proteins released from the large toxin by autoproteolysis catalyzed by an embedded cysteine protease domain (CPD). The CPD is activated upon binding inositol hexakisphosphate (InsP6). In this study, we demonstrated that InsP6 is not simply an allosteric cofactor, but rather binding of InsP6 stabilized the CPD structure, facilitating formation of the enzyme-substrate complex. The 1.95-Å crystal structure of this InsP6-bound unprocessed form of CPD was determined and revealed the scissile bond Leu3428–Ala3429 captured in the catalytic site. Upon processing at this site, CPD was converted to a form with 500-fold reduced affinity for InsP6, but was reactivated for high affinity binding of InsP6 by cooperative binding of both a new substrate and InsP6. Reactivation of CPD allowed cleavage of the MARTX toxin at other sites, specifically at leucine residues between the effector domains. Processed CPD also cleaved other proteins in trans, including the leucine-rich protein YopM, demonstrating that it is a promiscuous leucine-specific protease. |
doi_str_mv | 10.1074/jbc.M109.025510 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2785344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820384878</els_id><sourcerecordid>21135689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-b52835f7cb98b7b640d3d6e001c020ce13c672c95bcb71efd842006692b137773</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhSMEotPCmh1YCLGb6bUdJ_EGaVTxkjpCYqaoO8txbiauMvFgO6X8exxlxGOBN5blz-ee45NlLyisKJT55V1tVhsKcgVMCAqPsgWFii-5oLePswUAo0vJRHWWnYdwB2nlkj7NzqgsGJQgF5ndRj-aOHrdEz00ZON6NGOvPdmg6fRgw4G0zpP1GN3RO4Mh2GFPXEs266-7W7JzD3aYjt9s7a0jpksCXiPRkWzGPtpjj2RrI4Zn2ZNW9wGfn_aL7ObD-93Vp-X1l4-fr9bXSyNkFZe1YBUXbWlqWdVlXeTQ8KZAAGqAgUHKTVEyI0Vt6pJi21Q5AygKyWrKy7LkF9m7Wfc41gdsDA4xhVNHbw_a_1ROW_XvzWA7tXf3ipWV4HmeBF7PAi5Eq4JJ5k1n3DCgiYoCCAmQoLenKd59HzFEdbDBYN_rAd0YFKOUi6KSCbycQeNdCB7b304oqKlDlTpUU4dq7jC9ePl3gD_8qbQEvJmBzu67H9ajqq0zHR4Uq3LFpWKFENNHvJqxVjul994GdbNlQDnQogLOpqRyJjD1cW_RT2lxMNgk0RS2cfa_Ln8Bp7vAoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21135689</pqid></control><display><type>article</type><title>Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites</title><source>Open Access: PubMed Central</source><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Prochazkova, Katerina ; Shuvalova, Ludmilla A. ; Minasov, George ; Voburka, Zdeněk ; Anderson, Wayne F. ; Satchell, Karla J.F.</creator><creatorcontrib>Prochazkova, Katerina ; Shuvalova, Ludmilla A. ; Minasov, George ; Voburka, Zdeněk ; Anderson, Wayne F. ; Satchell, Karla J.F. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of Vibrio cholerae causes destruction of the actin cytoskeleton by covalent cross-linking of actin and inactivation of Rho GTPases. The effector domains responsible for these activities are here shown to be independent proteins released from the large toxin by autoproteolysis catalyzed by an embedded cysteine protease domain (CPD). The CPD is activated upon binding inositol hexakisphosphate (InsP6). In this study, we demonstrated that InsP6 is not simply an allosteric cofactor, but rather binding of InsP6 stabilized the CPD structure, facilitating formation of the enzyme-substrate complex. The 1.95-Å crystal structure of this InsP6-bound unprocessed form of CPD was determined and revealed the scissile bond Leu3428–Ala3429 captured in the catalytic site. Upon processing at this site, CPD was converted to a form with 500-fold reduced affinity for InsP6, but was reactivated for high affinity binding of InsP6 by cooperative binding of both a new substrate and InsP6. Reactivation of CPD allowed cleavage of the MARTX toxin at other sites, specifically at leucine residues between the effector domains. Processed CPD also cleaved other proteins in trans, including the leucine-rich protein YopM, demonstrating that it is a promiscuous leucine-specific protease.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.025510</identifier><identifier>PMID: 19620709</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ACTIN ; AFFINITY ; Alanine - chemistry ; Alanine - genetics ; Alanine - metabolism ; Amino Acid Sequence ; Arginine - chemistry ; Arginine - genetics ; Arginine - metabolism ; Binding Sites - genetics ; Catalytic Domain ; Cholera Toxin - chemistry ; Cholera Toxin - genetics ; Cholera Toxin - metabolism ; CLEAVAGE ; CROSS-LINKING ; CRYSTAL STRUCTURE ; Crystallization ; CYSTEINE ; Electrophoresis, Polyacrylamide Gel ; Enzyme Catalysis and Regulation ; Hydrophobic and Hydrophilic Interactions ; INACTIVATION ; INOSITOL ; LEUCINE ; Leucine - chemistry ; Leucine - genetics ; Leucine - metabolism ; Lysine - chemistry ; Lysine - genetics ; Lysine - metabolism ; MATERIALS SCIENCE ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Phytic Acid - chemistry ; Phytic Acid - metabolism ; PROCESSING ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; PROTEINS ; RESIDUES ; Static Electricity ; SUBSTRATES ; Thermodynamics ; TOXINS ; Trypsin - metabolism ; Vibrio cholerae ; Vibrio cholerae - genetics ; Vibrio cholerae - metabolism</subject><ispartof>The Journal of biological chemistry, 2009-09, Vol.284 (39), p.26557-26568</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2009 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-b52835f7cb98b7b640d3d6e001c020ce13c672c95bcb71efd842006692b137773</citedby><cites>FETCH-LOGICAL-c598t-b52835f7cb98b7b640d3d6e001c020ce13c672c95bcb71efd842006692b137773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785344/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785344/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19620709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1005900$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Prochazkova, Katerina</creatorcontrib><creatorcontrib>Shuvalova, Ludmilla A.</creatorcontrib><creatorcontrib>Minasov, George</creatorcontrib><creatorcontrib>Voburka, Zdeněk</creatorcontrib><creatorcontrib>Anderson, Wayne F.</creatorcontrib><creatorcontrib>Satchell, Karla J.F.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of Vibrio cholerae causes destruction of the actin cytoskeleton by covalent cross-linking of actin and inactivation of Rho GTPases. The effector domains responsible for these activities are here shown to be independent proteins released from the large toxin by autoproteolysis catalyzed by an embedded cysteine protease domain (CPD). The CPD is activated upon binding inositol hexakisphosphate (InsP6). In this study, we demonstrated that InsP6 is not simply an allosteric cofactor, but rather binding of InsP6 stabilized the CPD structure, facilitating formation of the enzyme-substrate complex. The 1.95-Å crystal structure of this InsP6-bound unprocessed form of CPD was determined and revealed the scissile bond Leu3428–Ala3429 captured in the catalytic site. Upon processing at this site, CPD was converted to a form with 500-fold reduced affinity for InsP6, but was reactivated for high affinity binding of InsP6 by cooperative binding of both a new substrate and InsP6. Reactivation of CPD allowed cleavage of the MARTX toxin at other sites, specifically at leucine residues between the effector domains. Processed CPD also cleaved other proteins in trans, including the leucine-rich protein YopM, demonstrating that it is a promiscuous leucine-specific protease.</description><subject>ACTIN</subject><subject>AFFINITY</subject><subject>Alanine - chemistry</subject><subject>Alanine - genetics</subject><subject>Alanine - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Arginine - chemistry</subject><subject>Arginine - genetics</subject><subject>Arginine - metabolism</subject><subject>Binding Sites - genetics</subject><subject>Catalytic Domain</subject><subject>Cholera Toxin - chemistry</subject><subject>Cholera Toxin - genetics</subject><subject>Cholera Toxin - metabolism</subject><subject>CLEAVAGE</subject><subject>CROSS-LINKING</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallization</subject><subject>CYSTEINE</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Enzyme Catalysis and Regulation</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>INACTIVATION</subject><subject>INOSITOL</subject><subject>LEUCINE</subject><subject>Leucine - chemistry</subject><subject>Leucine - genetics</subject><subject>Leucine - metabolism</subject><subject>Lysine - chemistry</subject><subject>Lysine - genetics</subject><subject>Lysine - metabolism</subject><subject>MATERIALS SCIENCE</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Phytic Acid - chemistry</subject><subject>Phytic Acid - metabolism</subject><subject>PROCESSING</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Structure, Tertiary</subject><subject>PROTEINS</subject><subject>RESIDUES</subject><subject>Static Electricity</subject><subject>SUBSTRATES</subject><subject>Thermodynamics</subject><subject>TOXINS</subject><subject>Trypsin - metabolism</subject><subject>Vibrio cholerae</subject><subject>Vibrio cholerae - genetics</subject><subject>Vibrio cholerae - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtv1DAUhSMEotPCmh1YCLGb6bUdJ_EGaVTxkjpCYqaoO8txbiauMvFgO6X8exxlxGOBN5blz-ee45NlLyisKJT55V1tVhsKcgVMCAqPsgWFii-5oLePswUAo0vJRHWWnYdwB2nlkj7NzqgsGJQgF5ndRj-aOHrdEz00ZON6NGOvPdmg6fRgw4G0zpP1GN3RO4Mh2GFPXEs266-7W7JzD3aYjt9s7a0jpksCXiPRkWzGPtpjj2RrI4Zn2ZNW9wGfn_aL7ObD-93Vp-X1l4-fr9bXSyNkFZe1YBUXbWlqWdVlXeTQ8KZAAGqAgUHKTVEyI0Vt6pJi21Q5AygKyWrKy7LkF9m7Wfc41gdsDA4xhVNHbw_a_1ROW_XvzWA7tXf3ipWV4HmeBF7PAi5Eq4JJ5k1n3DCgiYoCCAmQoLenKd59HzFEdbDBYN_rAd0YFKOUi6KSCbycQeNdCB7b304oqKlDlTpUU4dq7jC9ePl3gD_8qbQEvJmBzu67H9ajqq0zHR4Uq3LFpWKFENNHvJqxVjul994GdbNlQDnQogLOpqRyJjD1cW_RT2lxMNgk0RS2cfa_Ln8Bp7vAoQ</recordid><startdate>20090925</startdate><enddate>20090925</enddate><creator>Prochazkova, Katerina</creator><creator>Shuvalova, Ludmilla A.</creator><creator>Minasov, George</creator><creator>Voburka, Zdeněk</creator><creator>Anderson, Wayne F.</creator><creator>Satchell, Karla J.F.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7U7</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20090925</creationdate><title>Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites</title><author>Prochazkova, Katerina ; Shuvalova, Ludmilla A. ; Minasov, George ; Voburka, Zdeněk ; Anderson, Wayne F. ; Satchell, Karla J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-b52835f7cb98b7b640d3d6e001c020ce13c672c95bcb71efd842006692b137773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ACTIN</topic><topic>AFFINITY</topic><topic>Alanine - chemistry</topic><topic>Alanine - genetics</topic><topic>Alanine - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Arginine - chemistry</topic><topic>Arginine - genetics</topic><topic>Arginine - metabolism</topic><topic>Binding Sites - genetics</topic><topic>Catalytic Domain</topic><topic>Cholera Toxin - chemistry</topic><topic>Cholera Toxin - genetics</topic><topic>Cholera Toxin - metabolism</topic><topic>CLEAVAGE</topic><topic>CROSS-LINKING</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallization</topic><topic>CYSTEINE</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Enzyme Catalysis and Regulation</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>INACTIVATION</topic><topic>INOSITOL</topic><topic>LEUCINE</topic><topic>Leucine - chemistry</topic><topic>Leucine - genetics</topic><topic>Leucine - metabolism</topic><topic>Lysine - chemistry</topic><topic>Lysine - genetics</topic><topic>Lysine - metabolism</topic><topic>MATERIALS SCIENCE</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Phytic Acid - chemistry</topic><topic>Phytic Acid - metabolism</topic><topic>PROCESSING</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Structure, Tertiary</topic><topic>PROTEINS</topic><topic>RESIDUES</topic><topic>Static Electricity</topic><topic>SUBSTRATES</topic><topic>Thermodynamics</topic><topic>TOXINS</topic><topic>Trypsin - metabolism</topic><topic>Vibrio cholerae</topic><topic>Vibrio cholerae - genetics</topic><topic>Vibrio cholerae - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prochazkova, Katerina</creatorcontrib><creatorcontrib>Shuvalova, Ludmilla A.</creatorcontrib><creatorcontrib>Minasov, George</creatorcontrib><creatorcontrib>Voburka, Zdeněk</creatorcontrib><creatorcontrib>Anderson, Wayne F.</creatorcontrib><creatorcontrib>Satchell, Karla J.F.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) 3: Aquatic Pollution & Environmental Quality</collection><collection>Aquatic Science & Fisheries Abstracts (ASFA) Professional</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prochazkova, Katerina</au><au>Shuvalova, Ludmilla A.</au><au>Minasov, George</au><au>Voburka, Zdeněk</au><au>Anderson, Wayne F.</au><au>Satchell, Karla J.F.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-09-25</date><risdate>2009</risdate><volume>284</volume><issue>39</issue><spage>26557</spage><epage>26568</epage><pages>26557-26568</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of Vibrio cholerae causes destruction of the actin cytoskeleton by covalent cross-linking of actin and inactivation of Rho GTPases. The effector domains responsible for these activities are here shown to be independent proteins released from the large toxin by autoproteolysis catalyzed by an embedded cysteine protease domain (CPD). The CPD is activated upon binding inositol hexakisphosphate (InsP6). In this study, we demonstrated that InsP6 is not simply an allosteric cofactor, but rather binding of InsP6 stabilized the CPD structure, facilitating formation of the enzyme-substrate complex. The 1.95-Å crystal structure of this InsP6-bound unprocessed form of CPD was determined and revealed the scissile bond Leu3428–Ala3429 captured in the catalytic site. Upon processing at this site, CPD was converted to a form with 500-fold reduced affinity for InsP6, but was reactivated for high affinity binding of InsP6 by cooperative binding of both a new substrate and InsP6. Reactivation of CPD allowed cleavage of the MARTX toxin at other sites, specifically at leucine residues between the effector domains. Processed CPD also cleaved other proteins in trans, including the leucine-rich protein YopM, demonstrating that it is a promiscuous leucine-specific protease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19620709</pmid><doi>10.1074/jbc.M109.025510</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2009-09, Vol.284 (39), p.26557-26568 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2785344 |
source | Open Access: PubMed Central; MEDLINE; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection |
subjects | ACTIN AFFINITY Alanine - chemistry Alanine - genetics Alanine - metabolism Amino Acid Sequence Arginine - chemistry Arginine - genetics Arginine - metabolism Binding Sites - genetics Catalytic Domain Cholera Toxin - chemistry Cholera Toxin - genetics Cholera Toxin - metabolism CLEAVAGE CROSS-LINKING CRYSTAL STRUCTURE Crystallization CYSTEINE Electrophoresis, Polyacrylamide Gel Enzyme Catalysis and Regulation Hydrophobic and Hydrophilic Interactions INACTIVATION INOSITOL LEUCINE Leucine - chemistry Leucine - genetics Leucine - metabolism Lysine - chemistry Lysine - genetics Lysine - metabolism MATERIALS SCIENCE Models, Molecular Molecular Sequence Data Mutation Phytic Acid - chemistry Phytic Acid - metabolism PROCESSING Protein Binding Protein Folding Protein Structure, Tertiary PROTEINS RESIDUES Static Electricity SUBSTRATES Thermodynamics TOXINS Trypsin - metabolism Vibrio cholerae Vibrio cholerae - genetics Vibrio cholerae - metabolism |
title | Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Molecular%20Mechanism%20for%20Autoprocessing%20of%20MARTX%20Toxin%20of%20Vibrio%20cholerae%20at%20Multiple%20Sites&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Prochazkova,%20Katerina&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2009-09-25&rft.volume=284&rft.issue=39&rft.spage=26557&rft.epage=26568&rft.pages=26557-26568&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.025510&rft_dat=%3Cproquest_pubme%3E21135689%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21135689&rft_id=info:pmid/19620709&rft_els_id=S0021925820384878&rfr_iscdi=true |