Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites

The multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of Vibrio cholerae causes destruction of the actin cytoskeleton by covalent cross-linking of actin and inactivation of Rho GTPases. The effector domains responsible for these activities are here shown to be independent proteins releas...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-09, Vol.284 (39), p.26557-26568
Hauptverfasser: Prochazkova, Katerina, Shuvalova, Ludmilla A., Minasov, George, Voburka, Zdeněk, Anderson, Wayne F., Satchell, Karla J.F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 26568
container_issue 39
container_start_page 26557
container_title The Journal of biological chemistry
container_volume 284
creator Prochazkova, Katerina
Shuvalova, Ludmilla A.
Minasov, George
Voburka, Zdeněk
Anderson, Wayne F.
Satchell, Karla J.F.
description The multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of Vibrio cholerae causes destruction of the actin cytoskeleton by covalent cross-linking of actin and inactivation of Rho GTPases. The effector domains responsible for these activities are here shown to be independent proteins released from the large toxin by autoproteolysis catalyzed by an embedded cysteine protease domain (CPD). The CPD is activated upon binding inositol hexakisphosphate (InsP6). In this study, we demonstrated that InsP6 is not simply an allosteric cofactor, but rather binding of InsP6 stabilized the CPD structure, facilitating formation of the enzyme-substrate complex. The 1.95-Å crystal structure of this InsP6-bound unprocessed form of CPD was determined and revealed the scissile bond Leu3428–Ala3429 captured in the catalytic site. Upon processing at this site, CPD was converted to a form with 500-fold reduced affinity for InsP6, but was reactivated for high affinity binding of InsP6 by cooperative binding of both a new substrate and InsP6. Reactivation of CPD allowed cleavage of the MARTX toxin at other sites, specifically at leucine residues between the effector domains. Processed CPD also cleaved other proteins in trans, including the leucine-rich protein YopM, demonstrating that it is a promiscuous leucine-specific protease.
doi_str_mv 10.1074/jbc.M109.025510
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2785344</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820384878</els_id><sourcerecordid>21135689</sourcerecordid><originalsourceid>FETCH-LOGICAL-c598t-b52835f7cb98b7b640d3d6e001c020ce13c672c95bcb71efd842006692b137773</originalsourceid><addsrcrecordid>eNp1kUtv1DAUhSMEotPCmh1YCLGb6bUdJ_EGaVTxkjpCYqaoO8txbiauMvFgO6X8exxlxGOBN5blz-ee45NlLyisKJT55V1tVhsKcgVMCAqPsgWFii-5oLePswUAo0vJRHWWnYdwB2nlkj7NzqgsGJQgF5ndRj-aOHrdEz00ZON6NGOvPdmg6fRgw4G0zpP1GN3RO4Mh2GFPXEs266-7W7JzD3aYjt9s7a0jpksCXiPRkWzGPtpjj2RrI4Zn2ZNW9wGfn_aL7ObD-93Vp-X1l4-fr9bXSyNkFZe1YBUXbWlqWdVlXeTQ8KZAAGqAgUHKTVEyI0Vt6pJi21Q5AygKyWrKy7LkF9m7Wfc41gdsDA4xhVNHbw_a_1ROW_XvzWA7tXf3ipWV4HmeBF7PAi5Eq4JJ5k1n3DCgiYoCCAmQoLenKd59HzFEdbDBYN_rAd0YFKOUi6KSCbycQeNdCB7b304oqKlDlTpUU4dq7jC9ePl3gD_8qbQEvJmBzu67H9ajqq0zHR4Uq3LFpWKFENNHvJqxVjul994GdbNlQDnQogLOpqRyJjD1cW_RT2lxMNgk0RS2cfa_Ln8Bp7vAoQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21135689</pqid></control><display><type>article</type><title>Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites</title><source>Open Access: PubMed Central</source><source>MEDLINE</source><source>Free E-Journal (出版社公開部分のみ)</source><source>Alma/SFX Local Collection</source><creator>Prochazkova, Katerina ; Shuvalova, Ludmilla A. ; Minasov, George ; Voburka, Zdeněk ; Anderson, Wayne F. ; Satchell, Karla J.F.</creator><creatorcontrib>Prochazkova, Katerina ; Shuvalova, Ludmilla A. ; Minasov, George ; Voburka, Zdeněk ; Anderson, Wayne F. ; Satchell, Karla J.F. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>The multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of Vibrio cholerae causes destruction of the actin cytoskeleton by covalent cross-linking of actin and inactivation of Rho GTPases. The effector domains responsible for these activities are here shown to be independent proteins released from the large toxin by autoproteolysis catalyzed by an embedded cysteine protease domain (CPD). The CPD is activated upon binding inositol hexakisphosphate (InsP6). In this study, we demonstrated that InsP6 is not simply an allosteric cofactor, but rather binding of InsP6 stabilized the CPD structure, facilitating formation of the enzyme-substrate complex. The 1.95-Å crystal structure of this InsP6-bound unprocessed form of CPD was determined and revealed the scissile bond Leu3428–Ala3429 captured in the catalytic site. Upon processing at this site, CPD was converted to a form with 500-fold reduced affinity for InsP6, but was reactivated for high affinity binding of InsP6 by cooperative binding of both a new substrate and InsP6. Reactivation of CPD allowed cleavage of the MARTX toxin at other sites, specifically at leucine residues between the effector domains. Processed CPD also cleaved other proteins in trans, including the leucine-rich protein YopM, demonstrating that it is a promiscuous leucine-specific protease.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.025510</identifier><identifier>PMID: 19620709</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>ACTIN ; AFFINITY ; Alanine - chemistry ; Alanine - genetics ; Alanine - metabolism ; Amino Acid Sequence ; Arginine - chemistry ; Arginine - genetics ; Arginine - metabolism ; Binding Sites - genetics ; Catalytic Domain ; Cholera Toxin - chemistry ; Cholera Toxin - genetics ; Cholera Toxin - metabolism ; CLEAVAGE ; CROSS-LINKING ; CRYSTAL STRUCTURE ; Crystallization ; CYSTEINE ; Electrophoresis, Polyacrylamide Gel ; Enzyme Catalysis and Regulation ; Hydrophobic and Hydrophilic Interactions ; INACTIVATION ; INOSITOL ; LEUCINE ; Leucine - chemistry ; Leucine - genetics ; Leucine - metabolism ; Lysine - chemistry ; Lysine - genetics ; Lysine - metabolism ; MATERIALS SCIENCE ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Phytic Acid - chemistry ; Phytic Acid - metabolism ; PROCESSING ; Protein Binding ; Protein Folding ; Protein Structure, Tertiary ; PROTEINS ; RESIDUES ; Static Electricity ; SUBSTRATES ; Thermodynamics ; TOXINS ; Trypsin - metabolism ; Vibrio cholerae ; Vibrio cholerae - genetics ; Vibrio cholerae - metabolism</subject><ispartof>The Journal of biological chemistry, 2009-09, Vol.284 (39), p.26557-26568</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2009 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c598t-b52835f7cb98b7b640d3d6e001c020ce13c672c95bcb71efd842006692b137773</citedby><cites>FETCH-LOGICAL-c598t-b52835f7cb98b7b640d3d6e001c020ce13c672c95bcb71efd842006692b137773</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785344/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2785344/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27923,27924,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19620709$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1005900$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Prochazkova, Katerina</creatorcontrib><creatorcontrib>Shuvalova, Ludmilla A.</creatorcontrib><creatorcontrib>Minasov, George</creatorcontrib><creatorcontrib>Voburka, Zdeněk</creatorcontrib><creatorcontrib>Anderson, Wayne F.</creatorcontrib><creatorcontrib>Satchell, Karla J.F.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>The multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of Vibrio cholerae causes destruction of the actin cytoskeleton by covalent cross-linking of actin and inactivation of Rho GTPases. The effector domains responsible for these activities are here shown to be independent proteins released from the large toxin by autoproteolysis catalyzed by an embedded cysteine protease domain (CPD). The CPD is activated upon binding inositol hexakisphosphate (InsP6). In this study, we demonstrated that InsP6 is not simply an allosteric cofactor, but rather binding of InsP6 stabilized the CPD structure, facilitating formation of the enzyme-substrate complex. The 1.95-Å crystal structure of this InsP6-bound unprocessed form of CPD was determined and revealed the scissile bond Leu3428–Ala3429 captured in the catalytic site. Upon processing at this site, CPD was converted to a form with 500-fold reduced affinity for InsP6, but was reactivated for high affinity binding of InsP6 by cooperative binding of both a new substrate and InsP6. Reactivation of CPD allowed cleavage of the MARTX toxin at other sites, specifically at leucine residues between the effector domains. Processed CPD also cleaved other proteins in trans, including the leucine-rich protein YopM, demonstrating that it is a promiscuous leucine-specific protease.</description><subject>ACTIN</subject><subject>AFFINITY</subject><subject>Alanine - chemistry</subject><subject>Alanine - genetics</subject><subject>Alanine - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Arginine - chemistry</subject><subject>Arginine - genetics</subject><subject>Arginine - metabolism</subject><subject>Binding Sites - genetics</subject><subject>Catalytic Domain</subject><subject>Cholera Toxin - chemistry</subject><subject>Cholera Toxin - genetics</subject><subject>Cholera Toxin - metabolism</subject><subject>CLEAVAGE</subject><subject>CROSS-LINKING</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallization</subject><subject>CYSTEINE</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Enzyme Catalysis and Regulation</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>INACTIVATION</subject><subject>INOSITOL</subject><subject>LEUCINE</subject><subject>Leucine - chemistry</subject><subject>Leucine - genetics</subject><subject>Leucine - metabolism</subject><subject>Lysine - chemistry</subject><subject>Lysine - genetics</subject><subject>Lysine - metabolism</subject><subject>MATERIALS SCIENCE</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Phytic Acid - chemistry</subject><subject>Phytic Acid - metabolism</subject><subject>PROCESSING</subject><subject>Protein Binding</subject><subject>Protein Folding</subject><subject>Protein Structure, Tertiary</subject><subject>PROTEINS</subject><subject>RESIDUES</subject><subject>Static Electricity</subject><subject>SUBSTRATES</subject><subject>Thermodynamics</subject><subject>TOXINS</subject><subject>Trypsin - metabolism</subject><subject>Vibrio cholerae</subject><subject>Vibrio cholerae - genetics</subject><subject>Vibrio cholerae - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtv1DAUhSMEotPCmh1YCLGb6bUdJ_EGaVTxkjpCYqaoO8txbiauMvFgO6X8exxlxGOBN5blz-ee45NlLyisKJT55V1tVhsKcgVMCAqPsgWFii-5oLePswUAo0vJRHWWnYdwB2nlkj7NzqgsGJQgF5ndRj-aOHrdEz00ZON6NGOvPdmg6fRgw4G0zpP1GN3RO4Mh2GFPXEs266-7W7JzD3aYjt9s7a0jpksCXiPRkWzGPtpjj2RrI4Zn2ZNW9wGfn_aL7ObD-93Vp-X1l4-fr9bXSyNkFZe1YBUXbWlqWdVlXeTQ8KZAAGqAgUHKTVEyI0Vt6pJi21Q5AygKyWrKy7LkF9m7Wfc41gdsDA4xhVNHbw_a_1ROW_XvzWA7tXf3ipWV4HmeBF7PAi5Eq4JJ5k1n3DCgiYoCCAmQoLenKd59HzFEdbDBYN_rAd0YFKOUi6KSCbycQeNdCB7b304oqKlDlTpUU4dq7jC9ePl3gD_8qbQEvJmBzu67H9ajqq0zHR4Uq3LFpWKFENNHvJqxVjul994GdbNlQDnQogLOpqRyJjD1cW_RT2lxMNgk0RS2cfa_Ln8Bp7vAoQ</recordid><startdate>20090925</startdate><enddate>20090925</enddate><creator>Prochazkova, Katerina</creator><creator>Shuvalova, Ludmilla A.</creator><creator>Minasov, George</creator><creator>Voburka, Zdeněk</creator><creator>Anderson, Wayne F.</creator><creator>Satchell, Karla J.F.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7U7</scope><scope>C1K</scope><scope>F1W</scope><scope>H95</scope><scope>H97</scope><scope>L.G</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20090925</creationdate><title>Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites</title><author>Prochazkova, Katerina ; Shuvalova, Ludmilla A. ; Minasov, George ; Voburka, Zdeněk ; Anderson, Wayne F. ; Satchell, Karla J.F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c598t-b52835f7cb98b7b640d3d6e001c020ce13c672c95bcb71efd842006692b137773</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ACTIN</topic><topic>AFFINITY</topic><topic>Alanine - chemistry</topic><topic>Alanine - genetics</topic><topic>Alanine - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Arginine - chemistry</topic><topic>Arginine - genetics</topic><topic>Arginine - metabolism</topic><topic>Binding Sites - genetics</topic><topic>Catalytic Domain</topic><topic>Cholera Toxin - chemistry</topic><topic>Cholera Toxin - genetics</topic><topic>Cholera Toxin - metabolism</topic><topic>CLEAVAGE</topic><topic>CROSS-LINKING</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallization</topic><topic>CYSTEINE</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Enzyme Catalysis and Regulation</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>INACTIVATION</topic><topic>INOSITOL</topic><topic>LEUCINE</topic><topic>Leucine - chemistry</topic><topic>Leucine - genetics</topic><topic>Leucine - metabolism</topic><topic>Lysine - chemistry</topic><topic>Lysine - genetics</topic><topic>Lysine - metabolism</topic><topic>MATERIALS SCIENCE</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Phytic Acid - chemistry</topic><topic>Phytic Acid - metabolism</topic><topic>PROCESSING</topic><topic>Protein Binding</topic><topic>Protein Folding</topic><topic>Protein Structure, Tertiary</topic><topic>PROTEINS</topic><topic>RESIDUES</topic><topic>Static Electricity</topic><topic>SUBSTRATES</topic><topic>Thermodynamics</topic><topic>TOXINS</topic><topic>Trypsin - metabolism</topic><topic>Vibrio cholerae</topic><topic>Vibrio cholerae - genetics</topic><topic>Vibrio cholerae - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Prochazkova, Katerina</creatorcontrib><creatorcontrib>Shuvalova, Ludmilla A.</creatorcontrib><creatorcontrib>Minasov, George</creatorcontrib><creatorcontrib>Voburka, Zdeněk</creatorcontrib><creatorcontrib>Anderson, Wayne F.</creatorcontrib><creatorcontrib>Satchell, Karla J.F.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Toxicology Abstracts</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ASFA: Aquatic Sciences and Fisheries Abstracts</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 1: Biological Sciences &amp; Living Resources</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) 3: Aquatic Pollution &amp; Environmental Quality</collection><collection>Aquatic Science &amp; Fisheries Abstracts (ASFA) Professional</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Prochazkova, Katerina</au><au>Shuvalova, Ludmilla A.</au><au>Minasov, George</au><au>Voburka, Zdeněk</au><au>Anderson, Wayne F.</au><au>Satchell, Karla J.F.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-09-25</date><risdate>2009</risdate><volume>284</volume><issue>39</issue><spage>26557</spage><epage>26568</epage><pages>26557-26568</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>The multifunctional autoprocessing repeats-in-toxin (MARTX) toxin of Vibrio cholerae causes destruction of the actin cytoskeleton by covalent cross-linking of actin and inactivation of Rho GTPases. The effector domains responsible for these activities are here shown to be independent proteins released from the large toxin by autoproteolysis catalyzed by an embedded cysteine protease domain (CPD). The CPD is activated upon binding inositol hexakisphosphate (InsP6). In this study, we demonstrated that InsP6 is not simply an allosteric cofactor, but rather binding of InsP6 stabilized the CPD structure, facilitating formation of the enzyme-substrate complex. The 1.95-Å crystal structure of this InsP6-bound unprocessed form of CPD was determined and revealed the scissile bond Leu3428–Ala3429 captured in the catalytic site. Upon processing at this site, CPD was converted to a form with 500-fold reduced affinity for InsP6, but was reactivated for high affinity binding of InsP6 by cooperative binding of both a new substrate and InsP6. Reactivation of CPD allowed cleavage of the MARTX toxin at other sites, specifically at leucine residues between the effector domains. Processed CPD also cleaved other proteins in trans, including the leucine-rich protein YopM, demonstrating that it is a promiscuous leucine-specific protease.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19620709</pmid><doi>10.1074/jbc.M109.025510</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-09, Vol.284 (39), p.26557-26568
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2785344
source Open Access: PubMed Central; MEDLINE; Free E-Journal (出版社公開部分のみ); Alma/SFX Local Collection
subjects ACTIN
AFFINITY
Alanine - chemistry
Alanine - genetics
Alanine - metabolism
Amino Acid Sequence
Arginine - chemistry
Arginine - genetics
Arginine - metabolism
Binding Sites - genetics
Catalytic Domain
Cholera Toxin - chemistry
Cholera Toxin - genetics
Cholera Toxin - metabolism
CLEAVAGE
CROSS-LINKING
CRYSTAL STRUCTURE
Crystallization
CYSTEINE
Electrophoresis, Polyacrylamide Gel
Enzyme Catalysis and Regulation
Hydrophobic and Hydrophilic Interactions
INACTIVATION
INOSITOL
LEUCINE
Leucine - chemistry
Leucine - genetics
Leucine - metabolism
Lysine - chemistry
Lysine - genetics
Lysine - metabolism
MATERIALS SCIENCE
Models, Molecular
Molecular Sequence Data
Mutation
Phytic Acid - chemistry
Phytic Acid - metabolism
PROCESSING
Protein Binding
Protein Folding
Protein Structure, Tertiary
PROTEINS
RESIDUES
Static Electricity
SUBSTRATES
Thermodynamics
TOXINS
Trypsin - metabolism
Vibrio cholerae
Vibrio cholerae - genetics
Vibrio cholerae - metabolism
title Structural and Molecular Mechanism for Autoprocessing of MARTX Toxin of Vibrio cholerae at Multiple Sites
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T17%3A20%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structural%20and%20Molecular%20Mechanism%20for%20Autoprocessing%20of%20MARTX%20Toxin%20of%20Vibrio%20cholerae%20at%20Multiple%20Sites&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Prochazkova,%20Katerina&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2009-09-25&rft.volume=284&rft.issue=39&rft.spage=26557&rft.epage=26568&rft.pages=26557-26568&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.025510&rft_dat=%3Cproquest_pubme%3E21135689%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21135689&rft_id=info:pmid/19620709&rft_els_id=S0021925820384878&rfr_iscdi=true