Hyaluronan-CD44 Interaction with Protein Kinase Cϵ Promotes Oncogenic Signaling by the Stem Cell Marker Nanog and the Production of MicroRNA-21, Leading to Down-regulation of the Tumor Suppressor Protein PDCD4, Anti-apoptosis, and Chemotherapy Resistance in Breast Tumor Cells

Multidrug resistance and disease relapse is a challenging clinical problem in the treatment of breast cancer. In this study, we investigated the hyaluronan (HA)-induced interaction between CD44 (a primary HA receptor) and protein kinase Cϵ (PKCϵ), which regulates a number of human breast tumor cell...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-09, Vol.284 (39), p.26533-26546
Hauptverfasser: Bourguignon, Lilly Y.W., Spevak, Christina C., Wong, Gabriel, Xia, Weiliang, Gilad, Eli
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:Multidrug resistance and disease relapse is a challenging clinical problem in the treatment of breast cancer. In this study, we investigated the hyaluronan (HA)-induced interaction between CD44 (a primary HA receptor) and protein kinase Cϵ (PKCϵ), which regulates a number of human breast tumor cell functions. Our results indicate that HA binding to CD44 promotes PKCϵ activation, which, in turn, increases the phosphorylation of the stem cell marker, Nanog, in the breast tumor cell line MCF-7. Phosphorylated Nanog is then translocated from the cytosol to the nucleus and becomes associated with RNase III DROSHA and the RNA helicase p68. This process leads to microRNA-21 (miR-21) production and a tumor suppressor protein (e.g. PDCD4 (program cell death 4)) reduction. All of these events contribute to up-regulation of inhibitors of apoptosis proteins (IAPs) and MDR1 (multidrug-resistant protein), resulting in anti-apoptosis and chemotherapy resistance. Transfection of MCF-7 cells with PKCϵ or Nanog-specific small interfering RNAs effectively blocks HA-mediated PKCϵ-Nanog signaling events, abrogates miR-21 production, and increases PDCD4 expression/eIF4A binding. Subsequently, this PKCϵ-Nanog signaling inhibition causes IAP/MDR1 down-regulation, apoptosis, and chemosensitivity. To further evaluate the role of miR-21 in oncogenesis and chemoresistance, MCF-7 cells were also transfected with a specific anti-miR-21 inhibitor in order to silence miR-21 expression and inhibit its target functions. Our results indicate that anti-miR-21 inhibitor not only enhances PDCD4 expression/eIF4A binding but also blocks HA-CD44-mediated tumor cell behaviors. Thus, this newly discovered HA-CD44 signaling pathway should provide important drug targets for sensitizing tumor cell apoptosis and overcoming chemotherapy resistance in breast cancer cells.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.M109.027466