Biomechanical forces promote embryonic haematopoiesis
Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries init...
Gespeichert in:
Veröffentlicht in: | Nature (London) 2009-06, Vol.459 (7250), p.1131-1135 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1135 |
---|---|
container_issue | 7250 |
container_start_page | 1131 |
container_title | Nature (London) |
container_volume | 459 |
creator | Wenzel, Pamela L Yoder, Mervin C Naveiras, Olaia Lensch, M. William Daley, George Q McKinney-Freeman, Shannon García-Cardeña, Guillermo Mack, Peter J Suchy-Dicey, Astrid Gracia-Sancho, Jorge Yoshimoto, Momoko Adamo, Luigi |
description | Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41+c-Kit+ haematopoietic progenitor cells, concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta-gonads-mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development. |
doi_str_mv | 10.1038/nature08073 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2782763</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A203178447</galeid><sourcerecordid>A203178447</sourcerecordid><originalsourceid>FETCH-LOGICAL-c673t-72298b6d4b44a1129e2cfec99c62322b030da52f8719a43ca7a41f86475732143</originalsourceid><addsrcrecordid>eNp10tuL1DAUB-AiijuuPvkuo6Ag2jW3JumLMA5eFhYFXfExpJnTTpY26Sbtsvvfm6XDXGSkkELO198h6cmy5xidYUTlB6eHMQCSSNAH2QwzwXPGpXiYzRAiMkeS8pPsSYxXCKECC_Y4O8ElYygts6z4ZH0HZq2dNbqd1z4YiPM--M4PMIeuCnc-leZrDZ0efO8tRBufZo9q3UZ4tnmfZr-_fL5cfssvfnw9Xy4ucsMFHXJBSCkrvmIVYxpjUgIxNZiyNJxQQipE0UoXpJYCl5pRo4VmuJaciUJQghk9zT5Ouf1YdbAy4IagW9UH2-lwp7y26rDi7Fo1_kYRIYngNAW82QQEfz1CHFRno4G21Q78GBUXDEsp7zu9-gde-TG4dDhFECs4Q7RIKJ9Qo1tQ1tU-NTUNOEi9vYPapu0FQRQLyZjYhR5409trtY_OjqD0rKCz5mjq24MPkhngdmj0GKM6__Xz0L77v11c_ll-P6pN8DEGqLc3jZG6nzW1N2tJv9j_OTu7Ga4EXm-Ajmm46qCdsXHrCOYUybJM7v3kYiq5BsLu7o_3fTnxaXObt2_-Al6089U</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204564035</pqid></control><display><type>article</type><title>Biomechanical forces promote embryonic haematopoiesis</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>Wenzel, Pamela L ; Yoder, Mervin C ; Naveiras, Olaia ; Lensch, M. William ; Daley, George Q ; McKinney-Freeman, Shannon ; García-Cardeña, Guillermo ; Mack, Peter J ; Suchy-Dicey, Astrid ; Gracia-Sancho, Jorge ; Yoshimoto, Momoko ; Adamo, Luigi</creator><creatorcontrib>Wenzel, Pamela L ; Yoder, Mervin C ; Naveiras, Olaia ; Lensch, M. William ; Daley, George Q ; McKinney-Freeman, Shannon ; García-Cardeña, Guillermo ; Mack, Peter J ; Suchy-Dicey, Astrid ; Gracia-Sancho, Jorge ; Yoshimoto, Momoko ; Adamo, Luigi</creatorcontrib><description>Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41+c-Kit+ haematopoietic progenitor cells, concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta-gonads-mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development.</description><identifier>ISSN: 0028-0836</identifier><identifier>EISSN: 1476-4687</identifier><identifier>DOI: 10.1038/nature08073</identifier><identifier>PMID: 19440194</identifier><identifier>CODEN: NATUAS</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Aorta - cytology ; Aorta - embryology ; Biological and medical sciences ; Biomechanics ; Cell Differentiation ; Cell Line ; Cells, Cultured ; Core Binding Factor Alpha 2 Subunit - genetics ; Developmental stages ; Embryology: invertebrates and vertebrates. Teratology ; Embryonic development ; Embryonic growth stage ; Embryonic Stem Cells ; Embryos ; Endothelium-Dependent Relaxing Factors - pharmacology ; Female ; Fluid dynamics ; Fundamental and applied biological sciences. Psychology ; Gene expression ; Gene Expression Regulation, Developmental ; Genetic engineering ; Gonads ; Hematopoiesis ; Hematopoiesis - physiology ; Hematopoietic Stem Cells - cytology ; Hematopoietic Stem Cells - drug effects ; Humanities and Social Sciences ; Influence ; letter ; Methods ; Mice ; multidisciplinary ; Nitric oxide ; Nitric Oxide - pharmacology ; Organogenesis. Fetal development ; Organogenesis. Physiological fonctions ; Pregnancy ; Rodents ; Science ; Science (multidisciplinary) ; Shear stress ; Stem cells ; Stress, Mechanical ; Velocity</subject><ispartof>Nature (London), 2009-06, Vol.459 (7250), p.1131-1135</ispartof><rights>Macmillan Publishers Limited. All rights reserved 2009</rights><rights>2009 INIST-CNRS</rights><rights>COPYRIGHT 2009 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jun 25, 2009</rights><rights>2009 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c673t-72298b6d4b44a1129e2cfec99c62322b030da52f8719a43ca7a41f86475732143</citedby><cites>FETCH-LOGICAL-c673t-72298b6d4b44a1129e2cfec99c62322b030da52f8719a43ca7a41f86475732143</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2727,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21630899$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19440194$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wenzel, Pamela L</creatorcontrib><creatorcontrib>Yoder, Mervin C</creatorcontrib><creatorcontrib>Naveiras, Olaia</creatorcontrib><creatorcontrib>Lensch, M. William</creatorcontrib><creatorcontrib>Daley, George Q</creatorcontrib><creatorcontrib>McKinney-Freeman, Shannon</creatorcontrib><creatorcontrib>García-Cardeña, Guillermo</creatorcontrib><creatorcontrib>Mack, Peter J</creatorcontrib><creatorcontrib>Suchy-Dicey, Astrid</creatorcontrib><creatorcontrib>Gracia-Sancho, Jorge</creatorcontrib><creatorcontrib>Yoshimoto, Momoko</creatorcontrib><creatorcontrib>Adamo, Luigi</creatorcontrib><title>Biomechanical forces promote embryonic haematopoiesis</title><title>Nature (London)</title><addtitle>Nature</addtitle><addtitle>Nature</addtitle><description>Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41+c-Kit+ haematopoietic progenitor cells, concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta-gonads-mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development.</description><subject>Animals</subject><subject>Aorta - cytology</subject><subject>Aorta - embryology</subject><subject>Biological and medical sciences</subject><subject>Biomechanics</subject><subject>Cell Differentiation</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>Core Binding Factor Alpha 2 Subunit - genetics</subject><subject>Developmental stages</subject><subject>Embryology: invertebrates and vertebrates. Teratology</subject><subject>Embryonic development</subject><subject>Embryonic growth stage</subject><subject>Embryonic Stem Cells</subject><subject>Embryos</subject><subject>Endothelium-Dependent Relaxing Factors - pharmacology</subject><subject>Female</subject><subject>Fluid dynamics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Genetic engineering</subject><subject>Gonads</subject><subject>Hematopoiesis</subject><subject>Hematopoiesis - physiology</subject><subject>Hematopoietic Stem Cells - cytology</subject><subject>Hematopoietic Stem Cells - drug effects</subject><subject>Humanities and Social Sciences</subject><subject>Influence</subject><subject>letter</subject><subject>Methods</subject><subject>Mice</subject><subject>multidisciplinary</subject><subject>Nitric oxide</subject><subject>Nitric Oxide - pharmacology</subject><subject>Organogenesis. Fetal development</subject><subject>Organogenesis. Physiological fonctions</subject><subject>Pregnancy</subject><subject>Rodents</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Shear stress</subject><subject>Stem cells</subject><subject>Stress, Mechanical</subject><subject>Velocity</subject><issn>0028-0836</issn><issn>1476-4687</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNp10tuL1DAUB-AiijuuPvkuo6Ag2jW3JumLMA5eFhYFXfExpJnTTpY26Sbtsvvfm6XDXGSkkELO198h6cmy5xidYUTlB6eHMQCSSNAH2QwzwXPGpXiYzRAiMkeS8pPsSYxXCKECC_Y4O8ElYygts6z4ZH0HZq2dNbqd1z4YiPM--M4PMIeuCnc-leZrDZ0efO8tRBufZo9q3UZ4tnmfZr-_fL5cfssvfnw9Xy4ucsMFHXJBSCkrvmIVYxpjUgIxNZiyNJxQQipE0UoXpJYCl5pRo4VmuJaciUJQghk9zT5Ouf1YdbAy4IagW9UH2-lwp7y26rDi7Fo1_kYRIYngNAW82QQEfz1CHFRno4G21Q78GBUXDEsp7zu9-gde-TG4dDhFECs4Q7RIKJ9Qo1tQ1tU-NTUNOEi9vYPapu0FQRQLyZjYhR5409trtY_OjqD0rKCz5mjq24MPkhngdmj0GKM6__Xz0L77v11c_ll-P6pN8DEGqLc3jZG6nzW1N2tJv9j_OTu7Ga4EXm-Ajmm46qCdsXHrCOYUybJM7v3kYiq5BsLu7o_3fTnxaXObt2_-Al6089U</recordid><startdate>20090625</startdate><enddate>20090625</enddate><creator>Wenzel, Pamela L</creator><creator>Yoder, Mervin C</creator><creator>Naveiras, Olaia</creator><creator>Lensch, M. William</creator><creator>Daley, George Q</creator><creator>McKinney-Freeman, Shannon</creator><creator>García-Cardeña, Guillermo</creator><creator>Mack, Peter J</creator><creator>Suchy-Dicey, Astrid</creator><creator>Gracia-Sancho, Jorge</creator><creator>Yoshimoto, Momoko</creator><creator>Adamo, Luigi</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ATWCN</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7RV</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7TG</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88G</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB.</scope><scope>KB0</scope><scope>KL.</scope><scope>L6V</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2M</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>M7S</scope><scope>MBDVC</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PATMY</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PSYQQ</scope><scope>PTHSS</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>R05</scope><scope>RC3</scope><scope>S0X</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090625</creationdate><title>Biomechanical forces promote embryonic haematopoiesis</title><author>Wenzel, Pamela L ; Yoder, Mervin C ; Naveiras, Olaia ; Lensch, M. William ; Daley, George Q ; McKinney-Freeman, Shannon ; García-Cardeña, Guillermo ; Mack, Peter J ; Suchy-Dicey, Astrid ; Gracia-Sancho, Jorge ; Yoshimoto, Momoko ; Adamo, Luigi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c673t-72298b6d4b44a1129e2cfec99c62322b030da52f8719a43ca7a41f86475732143</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Aorta - cytology</topic><topic>Aorta - embryology</topic><topic>Biological and medical sciences</topic><topic>Biomechanics</topic><topic>Cell Differentiation</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>Core Binding Factor Alpha 2 Subunit - genetics</topic><topic>Developmental stages</topic><topic>Embryology: invertebrates and vertebrates. Teratology</topic><topic>Embryonic development</topic><topic>Embryonic growth stage</topic><topic>Embryonic Stem Cells</topic><topic>Embryos</topic><topic>Endothelium-Dependent Relaxing Factors - pharmacology</topic><topic>Female</topic><topic>Fluid dynamics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Genetic engineering</topic><topic>Gonads</topic><topic>Hematopoiesis</topic><topic>Hematopoiesis - physiology</topic><topic>Hematopoietic Stem Cells - cytology</topic><topic>Hematopoietic Stem Cells - drug effects</topic><topic>Humanities and Social Sciences</topic><topic>Influence</topic><topic>letter</topic><topic>Methods</topic><topic>Mice</topic><topic>multidisciplinary</topic><topic>Nitric oxide</topic><topic>Nitric Oxide - pharmacology</topic><topic>Organogenesis. Fetal development</topic><topic>Organogenesis. Physiological fonctions</topic><topic>Pregnancy</topic><topic>Rodents</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Shear stress</topic><topic>Stem cells</topic><topic>Stress, Mechanical</topic><topic>Velocity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wenzel, Pamela L</creatorcontrib><creatorcontrib>Yoder, Mervin C</creatorcontrib><creatorcontrib>Naveiras, Olaia</creatorcontrib><creatorcontrib>Lensch, M. William</creatorcontrib><creatorcontrib>Daley, George Q</creatorcontrib><creatorcontrib>McKinney-Freeman, Shannon</creatorcontrib><creatorcontrib>García-Cardeña, Guillermo</creatorcontrib><creatorcontrib>Mack, Peter J</creatorcontrib><creatorcontrib>Suchy-Dicey, Astrid</creatorcontrib><creatorcontrib>Gracia-Sancho, Jorge</creatorcontrib><creatorcontrib>Yoshimoto, Momoko</creatorcontrib><creatorcontrib>Adamo, Luigi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Middle School</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>ProQuest Nursing and Allied Health Source</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Meteorological & Geoastrophysical Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Proquest Health and Medical Complete</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Psychology Database (Alumni)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>Meteorological & Geoastrophysical Abstracts - Academic</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Psychology Database</collection><collection>ProQuest research library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Engineering Database</collection><collection>Research Library (Corporate)</collection><collection>Nursing & Allied Health Premium</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Environmental Science Database</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials science collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest One Psychology</collection><collection>Engineering collection</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>University of Michigan</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature (London)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wenzel, Pamela L</au><au>Yoder, Mervin C</au><au>Naveiras, Olaia</au><au>Lensch, M. William</au><au>Daley, George Q</au><au>McKinney-Freeman, Shannon</au><au>García-Cardeña, Guillermo</au><au>Mack, Peter J</au><au>Suchy-Dicey, Astrid</au><au>Gracia-Sancho, Jorge</au><au>Yoshimoto, Momoko</au><au>Adamo, Luigi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biomechanical forces promote embryonic haematopoiesis</atitle><jtitle>Nature (London)</jtitle><stitle>Nature</stitle><addtitle>Nature</addtitle><date>2009-06-25</date><risdate>2009</risdate><volume>459</volume><issue>7250</issue><spage>1131</spage><epage>1135</epage><pages>1131-1135</pages><issn>0028-0836</issn><eissn>1476-4687</eissn><coden>NATUAS</coden><abstract>Biomechanical forces are emerging as critical regulators of embryogenesis, particularly in the developing cardiovascular system. After initiation of the heartbeat in vertebrates, cells lining the ventral aspect of the dorsal aorta, the placental vessels, and the umbilical and vitelline arteries initiate expression of the transcription factor Runx1 (refs 3-5), a master regulator of haematopoiesis, and give rise to haematopoietic cells. It remains unknown whether the biomechanical forces imposed on the vascular wall at this developmental stage act as a determinant of haematopoietic potential. Here, using mouse embryonic stem cells differentiated in vitro, we show that fluid shear stress increases the expression of Runx1 in CD41+c-Kit+ haematopoietic progenitor cells, concomitantly augmenting their haematopoietic colony-forming potential. Moreover, we find that shear stress increases haematopoietic colony-forming potential and expression of haematopoietic markers in the para-aortic splanchnopleura/aorta-gonads-mesonephros of mouse embryos and that abrogation of nitric oxide, a mediator of shear-stress-induced signalling, compromises haematopoietic potential in vitro and in vivo. Collectively, these data reveal a critical role for biomechanical forces in haematopoietic development.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>19440194</pmid><doi>10.1038/nature08073</doi><tpages>5</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0028-0836 |
ispartof | Nature (London), 2009-06, Vol.459 (7250), p.1131-1135 |
issn | 0028-0836 1476-4687 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2782763 |
source | MEDLINE; Nature; Alma/SFX Local Collection |
subjects | Animals Aorta - cytology Aorta - embryology Biological and medical sciences Biomechanics Cell Differentiation Cell Line Cells, Cultured Core Binding Factor Alpha 2 Subunit - genetics Developmental stages Embryology: invertebrates and vertebrates. Teratology Embryonic development Embryonic growth stage Embryonic Stem Cells Embryos Endothelium-Dependent Relaxing Factors - pharmacology Female Fluid dynamics Fundamental and applied biological sciences. Psychology Gene expression Gene Expression Regulation, Developmental Genetic engineering Gonads Hematopoiesis Hematopoiesis - physiology Hematopoietic Stem Cells - cytology Hematopoietic Stem Cells - drug effects Humanities and Social Sciences Influence letter Methods Mice multidisciplinary Nitric oxide Nitric Oxide - pharmacology Organogenesis. Fetal development Organogenesis. Physiological fonctions Pregnancy Rodents Science Science (multidisciplinary) Shear stress Stem cells Stress, Mechanical Velocity |
title | Biomechanical forces promote embryonic haematopoiesis |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T13%3A39%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biomechanical%20forces%20promote%20embryonic%20haematopoiesis&rft.jtitle=Nature%20(London)&rft.au=Wenzel,%20Pamela%20L&rft.date=2009-06-25&rft.volume=459&rft.issue=7250&rft.spage=1131&rft.epage=1135&rft.pages=1131-1135&rft.issn=0028-0836&rft.eissn=1476-4687&rft.coden=NATUAS&rft_id=info:doi/10.1038/nature08073&rft_dat=%3Cgale_pubme%3EA203178447%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204564035&rft_id=info:pmid/19440194&rft_galeid=A203178447&rfr_iscdi=true |