Efficiently finding genome-wide three-way gene interactions from transcript- and genotype-data
Motivation: We address the issue of finding a three-way gene interaction, i.e. two interacting genes in expression under the genotypes of another gene, given a dataset in which expressions and genotypes are measured at once for each individual. This issue can be a general, switching mechanism in exp...
Gespeichert in:
Veröffentlicht in: | Bioinformatics 2009-11, Vol.25 (21), p.2735-2743 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2743 |
---|---|
container_issue | 21 |
container_start_page | 2735 |
container_title | Bioinformatics |
container_volume | 25 |
creator | Kayano, Mitsunori Takigawa, Ichigaku Shiga, Motoki Tsuda, Koji Mamitsuka, Hiroshi |
description | Motivation: We address the issue of finding a three-way gene interaction, i.e. two interacting genes in expression under the genotypes of another gene, given a dataset in which expressions and genotypes are measured at once for each individual. This issue can be a general, switching mechanism in expression of two genes, being controlled by categories of another gene, and finding this type of interaction can be a key to elucidating complex biological systems. The most suitable method for this issue is likelihood ratio test using logistic regressions, which we call interaction test, but a serious problem of this test is computational intractability at a genome-wide level. Results: We developed a fast method for this issue which improves the speed of interaction test by around 10 times for any size of datasets, keeping highly interacting genes with an accuracy of ∼85%. We applied our method to ∼3 × 108 three-way combinations generated from a dataset on human brain samples and detected three-way gene interactions with small P-values. To check the reliability of our results, we first conducted permutations by which we can show that the obtained P-values are significantly smaller than those obtained from permuted null examples. We then used GEO (Gene Expression Omnibus) to generate gene expression datasets with binary classes to confirm the detected three-way interactions by using these datasets and interaction tests. The result showed us some datasets with significantly small P-values, strongly supporting the reliability of the detected three-way interactions. Availability: Software is available from http://www.bic.kyoto-u.ac.jp/pathway/kayano/bioinfo_three-way.html Contact: kayano@kuicr.kyoto-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btp531 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2781753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btp531</oup_id><sourcerecordid>734099149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-d7420fe03f8344e193fc23791b247f99b0842d1ee333a5b8d407fff8c000db723</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhSMEoqXwE0C5AKfQsceJ4wsSVKVFqsQFJMQBy3HsrSGxU9tLu_8el10t9AKcPPJ879kzr6qeEnhFQODx4ILzNsRZZafT8ZCXFsm96pCwDhoKrbhfaux4w3rAg-pRSt8AWsIYe1gdEMGxoy09rL6eWuu0Mz5Pm9o6Pzq_qlfGh9k01240db6MppRqc3traueziUpnF3yqbQxznaPySUe35KZWfvwlzpvFNKPK6nH1wKopmSe786j69O7048l5c_Hh7P3Jm4tGd4znZuSMgjWAtkfGDBFoNUUuyEAZt0IM0DM6EmMQUbVDPzLg1tpeA8A4cIpH1eut77IeZjPqMk9Uk1yim1XcyKCcvNvx7lKuwg9JeU94i8Xg5c4ghqu1SVnOLmkzTcqbsE6SIwMhCBOFfPFXEjtE0tH-nyAlFGhLeAHbLahjSCkau_83AXkbtrwbttyGXXTP_hz6t2qXbgGe7wCVtJpsSUq7tOcoBVZIVjjYcmG9_PfbzVbiUjY3e5GK32XHkbfy_PMXSc6QvKUcyvZ-AqI72fY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21202517</pqid></control><display><type>article</type><title>Efficiently finding genome-wide three-way gene interactions from transcript- and genotype-data</title><source>MEDLINE</source><source>Oxford Open</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Kayano, Mitsunori ; Takigawa, Ichigaku ; Shiga, Motoki ; Tsuda, Koji ; Mamitsuka, Hiroshi</creator><creatorcontrib>Kayano, Mitsunori ; Takigawa, Ichigaku ; Shiga, Motoki ; Tsuda, Koji ; Mamitsuka, Hiroshi</creatorcontrib><description>Motivation: We address the issue of finding a three-way gene interaction, i.e. two interacting genes in expression under the genotypes of another gene, given a dataset in which expressions and genotypes are measured at once for each individual. This issue can be a general, switching mechanism in expression of two genes, being controlled by categories of another gene, and finding this type of interaction can be a key to elucidating complex biological systems. The most suitable method for this issue is likelihood ratio test using logistic regressions, which we call interaction test, but a serious problem of this test is computational intractability at a genome-wide level. Results: We developed a fast method for this issue which improves the speed of interaction test by around 10 times for any size of datasets, keeping highly interacting genes with an accuracy of ∼85%. We applied our method to ∼3 × 108 three-way combinations generated from a dataset on human brain samples and detected three-way gene interactions with small P-values. To check the reliability of our results, we first conducted permutations by which we can show that the obtained P-values are significantly smaller than those obtained from permuted null examples. We then used GEO (Gene Expression Omnibus) to generate gene expression datasets with binary classes to confirm the detected three-way interactions by using these datasets and interaction tests. The result showed us some datasets with significantly small P-values, strongly supporting the reliability of the detected three-way interactions. Availability: Software is available from http://www.bic.kyoto-u.ac.jp/pathway/kayano/bioinfo_three-way.html Contact: kayano@kuicr.kyoto-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btp531</identifier><identifier>PMID: 19736252</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Databases, Genetic ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Expression Profiling - methods ; General aspects ; Genome ; Genomics - methods ; Genotype ; Logistic Models ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Original Papers ; Software</subject><ispartof>Bioinformatics, 2009-11, Vol.25 (21), p.2735-2743</ispartof><rights>The Author(s) 2009. Published by Oxford University Press. 2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-d7420fe03f8344e193fc23791b247f99b0842d1ee333a5b8d407fff8c000db723</citedby><cites>FETCH-LOGICAL-c647t-d7420fe03f8344e193fc23791b247f99b0842d1ee333a5b8d407fff8c000db723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781753/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781753/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22047364$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19736252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kayano, Mitsunori</creatorcontrib><creatorcontrib>Takigawa, Ichigaku</creatorcontrib><creatorcontrib>Shiga, Motoki</creatorcontrib><creatorcontrib>Tsuda, Koji</creatorcontrib><creatorcontrib>Mamitsuka, Hiroshi</creatorcontrib><title>Efficiently finding genome-wide three-way gene interactions from transcript- and genotype-data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: We address the issue of finding a three-way gene interaction, i.e. two interacting genes in expression under the genotypes of another gene, given a dataset in which expressions and genotypes are measured at once for each individual. This issue can be a general, switching mechanism in expression of two genes, being controlled by categories of another gene, and finding this type of interaction can be a key to elucidating complex biological systems. The most suitable method for this issue is likelihood ratio test using logistic regressions, which we call interaction test, but a serious problem of this test is computational intractability at a genome-wide level. Results: We developed a fast method for this issue which improves the speed of interaction test by around 10 times for any size of datasets, keeping highly interacting genes with an accuracy of ∼85%. We applied our method to ∼3 × 108 three-way combinations generated from a dataset on human brain samples and detected three-way gene interactions with small P-values. To check the reliability of our results, we first conducted permutations by which we can show that the obtained P-values are significantly smaller than those obtained from permuted null examples. We then used GEO (Gene Expression Omnibus) to generate gene expression datasets with binary classes to confirm the detected three-way interactions by using these datasets and interaction tests. The result showed us some datasets with significantly small P-values, strongly supporting the reliability of the detected three-way interactions. Availability: Software is available from http://www.bic.kyoto-u.ac.jp/pathway/kayano/bioinfo_three-way.html Contact: kayano@kuicr.kyoto-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online.</description><subject>Biological and medical sciences</subject><subject>Databases, Genetic</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling - methods</subject><subject>General aspects</subject><subject>Genome</subject><subject>Genomics - methods</subject><subject>Genotype</subject><subject>Logistic Models</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Original Papers</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUFv1DAQhSMEoqXwE0C5AKfQsceJ4wsSVKVFqsQFJMQBy3HsrSGxU9tLu_8el10t9AKcPPJ879kzr6qeEnhFQODx4ILzNsRZZafT8ZCXFsm96pCwDhoKrbhfaux4w3rAg-pRSt8AWsIYe1gdEMGxoy09rL6eWuu0Mz5Pm9o6Pzq_qlfGh9k01240db6MppRqc3traueziUpnF3yqbQxznaPySUe35KZWfvwlzpvFNKPK6nH1wKopmSe786j69O7048l5c_Hh7P3Jm4tGd4znZuSMgjWAtkfGDBFoNUUuyEAZt0IM0DM6EmMQUbVDPzLg1tpeA8A4cIpH1eut77IeZjPqMk9Uk1yim1XcyKCcvNvx7lKuwg9JeU94i8Xg5c4ghqu1SVnOLmkzTcqbsE6SIwMhCBOFfPFXEjtE0tH-nyAlFGhLeAHbLahjSCkau_83AXkbtrwbttyGXXTP_hz6t2qXbgGe7wCVtJpsSUq7tOcoBVZIVjjYcmG9_PfbzVbiUjY3e5GK32XHkbfy_PMXSc6QvKUcyvZ-AqI72fY</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Kayano, Mitsunori</creator><creator>Takigawa, Ichigaku</creator><creator>Shiga, Motoki</creator><creator>Tsuda, Koji</creator><creator>Mamitsuka, Hiroshi</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>TOX</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091101</creationdate><title>Efficiently finding genome-wide three-way gene interactions from transcript- and genotype-data</title><author>Kayano, Mitsunori ; Takigawa, Ichigaku ; Shiga, Motoki ; Tsuda, Koji ; Mamitsuka, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-d7420fe03f8344e193fc23791b247f99b0842d1ee333a5b8d407fff8c000db723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and medical sciences</topic><topic>Databases, Genetic</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling - methods</topic><topic>General aspects</topic><topic>Genome</topic><topic>Genomics - methods</topic><topic>Genotype</topic><topic>Logistic Models</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Original Papers</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kayano, Mitsunori</creatorcontrib><creatorcontrib>Takigawa, Ichigaku</creatorcontrib><creatorcontrib>Shiga, Motoki</creatorcontrib><creatorcontrib>Tsuda, Koji</creatorcontrib><creatorcontrib>Mamitsuka, Hiroshi</creatorcontrib><collection>Istex</collection><collection>Oxford Open</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kayano, Mitsunori</au><au>Takigawa, Ichigaku</au><au>Shiga, Motoki</au><au>Tsuda, Koji</au><au>Mamitsuka, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiently finding genome-wide three-way gene interactions from transcript- and genotype-data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>25</volume><issue>21</issue><spage>2735</spage><epage>2743</epage><pages>2735-2743</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Motivation: We address the issue of finding a three-way gene interaction, i.e. two interacting genes in expression under the genotypes of another gene, given a dataset in which expressions and genotypes are measured at once for each individual. This issue can be a general, switching mechanism in expression of two genes, being controlled by categories of another gene, and finding this type of interaction can be a key to elucidating complex biological systems. The most suitable method for this issue is likelihood ratio test using logistic regressions, which we call interaction test, but a serious problem of this test is computational intractability at a genome-wide level. Results: We developed a fast method for this issue which improves the speed of interaction test by around 10 times for any size of datasets, keeping highly interacting genes with an accuracy of ∼85%. We applied our method to ∼3 × 108 three-way combinations generated from a dataset on human brain samples and detected three-way gene interactions with small P-values. To check the reliability of our results, we first conducted permutations by which we can show that the obtained P-values are significantly smaller than those obtained from permuted null examples. We then used GEO (Gene Expression Omnibus) to generate gene expression datasets with binary classes to confirm the detected three-way interactions by using these datasets and interaction tests. The result showed us some datasets with significantly small P-values, strongly supporting the reliability of the detected three-way interactions. Availability: Software is available from http://www.bic.kyoto-u.ac.jp/pathway/kayano/bioinfo_three-way.html Contact: kayano@kuicr.kyoto-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>19736252</pmid><doi>10.1093/bioinformatics/btp531</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2009-11, Vol.25 (21), p.2735-2743 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2781753 |
source | MEDLINE; Oxford Open; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library |
subjects | Biological and medical sciences Databases, Genetic Fundamental and applied biological sciences. Psychology Gene Expression Gene Expression Profiling - methods General aspects Genome Genomics - methods Genotype Logistic Models Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Original Papers Software |
title | Efficiently finding genome-wide three-way gene interactions from transcript- and genotype-data |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiently%20finding%20genome-wide%20three-way%20gene%20interactions%20from%20transcript-%20and%20genotype-data&rft.jtitle=Bioinformatics&rft.au=Kayano,%20Mitsunori&rft.date=2009-11-01&rft.volume=25&rft.issue=21&rft.spage=2735&rft.epage=2743&rft.pages=2735-2743&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btp531&rft_dat=%3Cproquest_pubme%3E734099149%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21202517&rft_id=info:pmid/19736252&rft_oup_id=10.1093/bioinformatics/btp531&rfr_iscdi=true |