Efficiently finding genome-wide three-way gene interactions from transcript- and genotype-data

Motivation: We address the issue of finding a three-way gene interaction, i.e. two interacting genes in expression under the genotypes of another gene, given a dataset in which expressions and genotypes are measured at once for each individual. This issue can be a general, switching mechanism in exp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2009-11, Vol.25 (21), p.2735-2743
Hauptverfasser: Kayano, Mitsunori, Takigawa, Ichigaku, Shiga, Motoki, Tsuda, Koji, Mamitsuka, Hiroshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2743
container_issue 21
container_start_page 2735
container_title Bioinformatics
container_volume 25
creator Kayano, Mitsunori
Takigawa, Ichigaku
Shiga, Motoki
Tsuda, Koji
Mamitsuka, Hiroshi
description Motivation: We address the issue of finding a three-way gene interaction, i.e. two interacting genes in expression under the genotypes of another gene, given a dataset in which expressions and genotypes are measured at once for each individual. This issue can be a general, switching mechanism in expression of two genes, being controlled by categories of another gene, and finding this type of interaction can be a key to elucidating complex biological systems. The most suitable method for this issue is likelihood ratio test using logistic regressions, which we call interaction test, but a serious problem of this test is computational intractability at a genome-wide level. Results: We developed a fast method for this issue which improves the speed of interaction test by around 10 times for any size of datasets, keeping highly interacting genes with an accuracy of ∼85%. We applied our method to ∼3 × 108 three-way combinations generated from a dataset on human brain samples and detected three-way gene interactions with small P-values. To check the reliability of our results, we first conducted permutations by which we can show that the obtained P-values are significantly smaller than those obtained from permuted null examples. We then used GEO (Gene Expression Omnibus) to generate gene expression datasets with binary classes to confirm the detected three-way interactions by using these datasets and interaction tests. The result showed us some datasets with significantly small P-values, strongly supporting the reliability of the detected three-way interactions. Availability: Software is available from http://www.bic.kyoto-u.ac.jp/pathway/kayano/bioinfo_three-way.html Contact: kayano@kuicr.kyoto-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btp531
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2781753</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btp531</oup_id><sourcerecordid>734099149</sourcerecordid><originalsourceid>FETCH-LOGICAL-c647t-d7420fe03f8344e193fc23791b247f99b0842d1ee333a5b8d407fff8c000db723</originalsourceid><addsrcrecordid>eNqNkUFv1DAQhSMEoqXwE0C5AKfQsceJ4wsSVKVFqsQFJMQBy3HsrSGxU9tLu_8el10t9AKcPPJ879kzr6qeEnhFQODx4ILzNsRZZafT8ZCXFsm96pCwDhoKrbhfaux4w3rAg-pRSt8AWsIYe1gdEMGxoy09rL6eWuu0Mz5Pm9o6Pzq_qlfGh9k01240db6MppRqc3traueziUpnF3yqbQxznaPySUe35KZWfvwlzpvFNKPK6nH1wKopmSe786j69O7048l5c_Hh7P3Jm4tGd4znZuSMgjWAtkfGDBFoNUUuyEAZt0IM0DM6EmMQUbVDPzLg1tpeA8A4cIpH1eut77IeZjPqMk9Uk1yim1XcyKCcvNvx7lKuwg9JeU94i8Xg5c4ghqu1SVnOLmkzTcqbsE6SIwMhCBOFfPFXEjtE0tH-nyAlFGhLeAHbLahjSCkau_83AXkbtrwbttyGXXTP_hz6t2qXbgGe7wCVtJpsSUq7tOcoBVZIVjjYcmG9_PfbzVbiUjY3e5GK32XHkbfy_PMXSc6QvKUcyvZ-AqI72fY</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21202517</pqid></control><display><type>article</type><title>Efficiently finding genome-wide three-way gene interactions from transcript- and genotype-data</title><source>MEDLINE</source><source>Oxford Open</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><source>EZB Electronic Journals Library</source><creator>Kayano, Mitsunori ; Takigawa, Ichigaku ; Shiga, Motoki ; Tsuda, Koji ; Mamitsuka, Hiroshi</creator><creatorcontrib>Kayano, Mitsunori ; Takigawa, Ichigaku ; Shiga, Motoki ; Tsuda, Koji ; Mamitsuka, Hiroshi</creatorcontrib><description>Motivation: We address the issue of finding a three-way gene interaction, i.e. two interacting genes in expression under the genotypes of another gene, given a dataset in which expressions and genotypes are measured at once for each individual. This issue can be a general, switching mechanism in expression of two genes, being controlled by categories of another gene, and finding this type of interaction can be a key to elucidating complex biological systems. The most suitable method for this issue is likelihood ratio test using logistic regressions, which we call interaction test, but a serious problem of this test is computational intractability at a genome-wide level. Results: We developed a fast method for this issue which improves the speed of interaction test by around 10 times for any size of datasets, keeping highly interacting genes with an accuracy of ∼85%. We applied our method to ∼3 × 108 three-way combinations generated from a dataset on human brain samples and detected three-way gene interactions with small P-values. To check the reliability of our results, we first conducted permutations by which we can show that the obtained P-values are significantly smaller than those obtained from permuted null examples. We then used GEO (Gene Expression Omnibus) to generate gene expression datasets with binary classes to confirm the detected three-way interactions by using these datasets and interaction tests. The result showed us some datasets with significantly small P-values, strongly supporting the reliability of the detected three-way interactions. Availability: Software is available from http://www.bic.kyoto-u.ac.jp/pathway/kayano/bioinfo_three-way.html Contact: kayano@kuicr.kyoto-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btp531</identifier><identifier>PMID: 19736252</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Biological and medical sciences ; Databases, Genetic ; Fundamental and applied biological sciences. Psychology ; Gene Expression ; Gene Expression Profiling - methods ; General aspects ; Genome ; Genomics - methods ; Genotype ; Logistic Models ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Original Papers ; Software</subject><ispartof>Bioinformatics, 2009-11, Vol.25 (21), p.2735-2743</ispartof><rights>The Author(s) 2009. Published by Oxford University Press. 2009</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c647t-d7420fe03f8344e193fc23791b247f99b0842d1ee333a5b8d407fff8c000db723</citedby><cites>FETCH-LOGICAL-c647t-d7420fe03f8344e193fc23791b247f99b0842d1ee333a5b8d407fff8c000db723</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781753/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781753/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1603,27922,27923,53789,53791</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22047364$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19736252$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kayano, Mitsunori</creatorcontrib><creatorcontrib>Takigawa, Ichigaku</creatorcontrib><creatorcontrib>Shiga, Motoki</creatorcontrib><creatorcontrib>Tsuda, Koji</creatorcontrib><creatorcontrib>Mamitsuka, Hiroshi</creatorcontrib><title>Efficiently finding genome-wide three-way gene interactions from transcript- and genotype-data</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: We address the issue of finding a three-way gene interaction, i.e. two interacting genes in expression under the genotypes of another gene, given a dataset in which expressions and genotypes are measured at once for each individual. This issue can be a general, switching mechanism in expression of two genes, being controlled by categories of another gene, and finding this type of interaction can be a key to elucidating complex biological systems. The most suitable method for this issue is likelihood ratio test using logistic regressions, which we call interaction test, but a serious problem of this test is computational intractability at a genome-wide level. Results: We developed a fast method for this issue which improves the speed of interaction test by around 10 times for any size of datasets, keeping highly interacting genes with an accuracy of ∼85%. We applied our method to ∼3 × 108 three-way combinations generated from a dataset on human brain samples and detected three-way gene interactions with small P-values. To check the reliability of our results, we first conducted permutations by which we can show that the obtained P-values are significantly smaller than those obtained from permuted null examples. We then used GEO (Gene Expression Omnibus) to generate gene expression datasets with binary classes to confirm the detected three-way interactions by using these datasets and interaction tests. The result showed us some datasets with significantly small P-values, strongly supporting the reliability of the detected three-way interactions. Availability: Software is available from http://www.bic.kyoto-u.ac.jp/pathway/kayano/bioinfo_three-way.html Contact: kayano@kuicr.kyoto-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online.</description><subject>Biological and medical sciences</subject><subject>Databases, Genetic</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression</subject><subject>Gene Expression Profiling - methods</subject><subject>General aspects</subject><subject>Genome</subject><subject>Genomics - methods</subject><subject>Genotype</subject><subject>Logistic Models</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Original Papers</subject><subject>Software</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkUFv1DAQhSMEoqXwE0C5AKfQsceJ4wsSVKVFqsQFJMQBy3HsrSGxU9tLu_8el10t9AKcPPJ879kzr6qeEnhFQODx4ILzNsRZZafT8ZCXFsm96pCwDhoKrbhfaux4w3rAg-pRSt8AWsIYe1gdEMGxoy09rL6eWuu0Mz5Pm9o6Pzq_qlfGh9k01240db6MppRqc3traueziUpnF3yqbQxznaPySUe35KZWfvwlzpvFNKPK6nH1wKopmSe786j69O7048l5c_Hh7P3Jm4tGd4znZuSMgjWAtkfGDBFoNUUuyEAZt0IM0DM6EmMQUbVDPzLg1tpeA8A4cIpH1eut77IeZjPqMk9Uk1yim1XcyKCcvNvx7lKuwg9JeU94i8Xg5c4ghqu1SVnOLmkzTcqbsE6SIwMhCBOFfPFXEjtE0tH-nyAlFGhLeAHbLahjSCkau_83AXkbtrwbttyGXXTP_hz6t2qXbgGe7wCVtJpsSUq7tOcoBVZIVjjYcmG9_PfbzVbiUjY3e5GK32XHkbfy_PMXSc6QvKUcyvZ-AqI72fY</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Kayano, Mitsunori</creator><creator>Takigawa, Ichigaku</creator><creator>Shiga, Motoki</creator><creator>Tsuda, Koji</creator><creator>Mamitsuka, Hiroshi</creator><general>Oxford University Press</general><scope>BSCLL</scope><scope>TOX</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7SC</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091101</creationdate><title>Efficiently finding genome-wide three-way gene interactions from transcript- and genotype-data</title><author>Kayano, Mitsunori ; Takigawa, Ichigaku ; Shiga, Motoki ; Tsuda, Koji ; Mamitsuka, Hiroshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c647t-d7420fe03f8344e193fc23791b247f99b0842d1ee333a5b8d407fff8c000db723</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biological and medical sciences</topic><topic>Databases, Genetic</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression</topic><topic>Gene Expression Profiling - methods</topic><topic>General aspects</topic><topic>Genome</topic><topic>Genomics - methods</topic><topic>Genotype</topic><topic>Logistic Models</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Original Papers</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kayano, Mitsunori</creatorcontrib><creatorcontrib>Takigawa, Ichigaku</creatorcontrib><creatorcontrib>Shiga, Motoki</creatorcontrib><creatorcontrib>Tsuda, Koji</creatorcontrib><creatorcontrib>Mamitsuka, Hiroshi</creatorcontrib><collection>Istex</collection><collection>Oxford Open</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kayano, Mitsunori</au><au>Takigawa, Ichigaku</au><au>Shiga, Motoki</au><au>Tsuda, Koji</au><au>Mamitsuka, Hiroshi</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Efficiently finding genome-wide three-way gene interactions from transcript- and genotype-data</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>25</volume><issue>21</issue><spage>2735</spage><epage>2743</epage><pages>2735-2743</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><abstract>Motivation: We address the issue of finding a three-way gene interaction, i.e. two interacting genes in expression under the genotypes of another gene, given a dataset in which expressions and genotypes are measured at once for each individual. This issue can be a general, switching mechanism in expression of two genes, being controlled by categories of another gene, and finding this type of interaction can be a key to elucidating complex biological systems. The most suitable method for this issue is likelihood ratio test using logistic regressions, which we call interaction test, but a serious problem of this test is computational intractability at a genome-wide level. Results: We developed a fast method for this issue which improves the speed of interaction test by around 10 times for any size of datasets, keeping highly interacting genes with an accuracy of ∼85%. We applied our method to ∼3 × 108 three-way combinations generated from a dataset on human brain samples and detected three-way gene interactions with small P-values. To check the reliability of our results, we first conducted permutations by which we can show that the obtained P-values are significantly smaller than those obtained from permuted null examples. We then used GEO (Gene Expression Omnibus) to generate gene expression datasets with binary classes to confirm the detected three-way interactions by using these datasets and interaction tests. The result showed us some datasets with significantly small P-values, strongly supporting the reliability of the detected three-way interactions. Availability: Software is available from http://www.bic.kyoto-u.ac.jp/pathway/kayano/bioinfo_three-way.html Contact: kayano@kuicr.kyoto-u.ac.jp Supplementary information: Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>19736252</pmid><doi>10.1093/bioinformatics/btp531</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2009-11, Vol.25 (21), p.2735-2743
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2781753
source MEDLINE; Oxford Open; PubMed Central; Alma/SFX Local Collection; EZB Electronic Journals Library
subjects Biological and medical sciences
Databases, Genetic
Fundamental and applied biological sciences. Psychology
Gene Expression
Gene Expression Profiling - methods
General aspects
Genome
Genomics - methods
Genotype
Logistic Models
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Original Papers
Software
title Efficiently finding genome-wide three-way gene interactions from transcript- and genotype-data
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T00%3A11%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Efficiently%20finding%20genome-wide%20three-way%20gene%20interactions%20from%20transcript-%20and%20genotype-data&rft.jtitle=Bioinformatics&rft.au=Kayano,%20Mitsunori&rft.date=2009-11-01&rft.volume=25&rft.issue=21&rft.spage=2735&rft.epage=2743&rft.pages=2735-2743&rft.issn=1367-4803&rft.eissn=1460-2059&rft_id=info:doi/10.1093/bioinformatics/btp531&rft_dat=%3Cproquest_pubme%3E734099149%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21202517&rft_id=info:pmid/19736252&rft_oup_id=10.1093/bioinformatics/btp531&rfr_iscdi=true