Quantitative Imaging to Assess Tumor Response to Therapy: Common Themes of Measurement, Truth Data, and Error Sources
RATIONALE: Early detection of tumor response to therapy is a key goal. Finding measurement algorithms capable of early detection of tumor response could individualize therapy treatment as well as reduce the cost of bringing new drugs to market. On an individual basis, the urgency arises from the des...
Gespeichert in:
Veröffentlicht in: | Translational oncology 2009-12, Vol.2 (4), p.198-210 |
---|---|
Hauptverfasser: | , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 210 |
---|---|
container_issue | 4 |
container_start_page | 198 |
container_title | Translational oncology |
container_volume | 2 |
creator | Meyer, Charles R. Armato, Samuel G. Fenimore, Charles P. McLennan, Geoffrey Bidautn, Luc M. Barboriak, Daniel P. Gavrielides, Marios A. Jackson, Edward F. McNitt-Gray, Michael F. Kinahan, Paul E. Petrick, Nicholas Zhao, Binsheng |
description | RATIONALE: Early detection of tumor response to therapy is a key goal. Finding measurement algorithms capable of early detection of tumor response could individualize therapy treatment as well as reduce the cost of bringing new drugs to market. On an individual basis, the urgency arises from the desire to prevent continued treatment of the patient with a high-cost and/or high-risk regimen with no demonstrated individual benefit and rapidly switch the patient to an alternative efficacious therapy for that patient. In the context of bringing new drugs to market, such algorithms could demonstrate efficacy in much smaller populations, which would allow phase 3 trials to achieve statistically significant decisions with fewer subjects in shorter trials. MATERIALS AND METHODS: This consensus-based article describes multiple, image modality-independent means to assess the relative performance of algorithms for measuring tumor change in response to therapy. In this setting, we describe specifically the example of measurement of tumor volume change from anatomic imaging as well as provide an overview of other promising generic analytic methods that can be used to assess change in heterogeneous tumors. To support assessment of the relative performance of algorithms for measuring small tumor change, data sources of truth are required. RESULTS: Very short interval clinical imaging examinations and phantom scans provide known truth for comparative evaluation of algorithms. CONCLUSIONS: For a given category of measurement methods, the algorithm that has the smallest measurement noise and least bias on average will perform best in early detection of true tumor change. |
doi_str_mv | 10.1593/tlo.09208 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2781075</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1936523309800259</els_id><sourcerecordid>734168290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c484t-221457701737ab70e7930a648784ef653e9264d79a54e4a6d7ca5ea77f3d16683</originalsourceid><addsrcrecordid>eNptkd9rFDEQx4MotlYf_AckbyL0arLJJhsfhHJWLVREPZ_DNDt7F9lNzvw46H_vnndoBZ8mw3z4zJAvIc85u-CtEa_LGC-YaVj3gJxyI9SibYR4eO99Qp7k_IMxxU3TPCYn3JhWCW1OSf1SIRRfoPgd0usJ1j6saYn0MmfMma7qFBP9inkbQ8b9YLXBBNu7N3QZpymGfT9hpnGgnxByTXMXyjldpVo29B0UOKcQenqV0iz6FmtymJ-SRwOMGZ8d6xn5_v5qtfy4uPn84Xp5ebNwspNl0TRctlozroWGW81QG8FAyU53EgfVCjSNkr020EqUoHrtoEXQehA9V6oTZ-TtwbuttxP2br4swWi3yU-Q7mwEb_-dBL-x67izje440-0seHkUpPizYi528tnhOELAWLPVQnLVNYbN5KsD6VLMOeHwZwtndp-SnVOyv1Oa2Rf3z_pLHmOZAXEAcP6cncdks_MYHPY-oSu2j_4_2l9J0qBn</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>734168290</pqid></control><display><type>article</type><title>Quantitative Imaging to Assess Tumor Response to Therapy: Common Themes of Measurement, Truth Data, and Error Sources</title><source>DOAJ Directory of Open Access Journals</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Meyer, Charles R. ; Armato, Samuel G. ; Fenimore, Charles P. ; McLennan, Geoffrey ; Bidautn, Luc M. ; Barboriak, Daniel P. ; Gavrielides, Marios A. ; Jackson, Edward F. ; McNitt-Gray, Michael F. ; Kinahan, Paul E. ; Petrick, Nicholas ; Zhao, Binsheng</creator><creatorcontrib>Meyer, Charles R. ; Armato, Samuel G. ; Fenimore, Charles P. ; McLennan, Geoffrey ; Bidautn, Luc M. ; Barboriak, Daniel P. ; Gavrielides, Marios A. ; Jackson, Edward F. ; McNitt-Gray, Michael F. ; Kinahan, Paul E. ; Petrick, Nicholas ; Zhao, Binsheng</creatorcontrib><description>RATIONALE: Early detection of tumor response to therapy is a key goal. Finding measurement algorithms capable of early detection of tumor response could individualize therapy treatment as well as reduce the cost of bringing new drugs to market. On an individual basis, the urgency arises from the desire to prevent continued treatment of the patient with a high-cost and/or high-risk regimen with no demonstrated individual benefit and rapidly switch the patient to an alternative efficacious therapy for that patient. In the context of bringing new drugs to market, such algorithms could demonstrate efficacy in much smaller populations, which would allow phase 3 trials to achieve statistically significant decisions with fewer subjects in shorter trials. MATERIALS AND METHODS: This consensus-based article describes multiple, image modality-independent means to assess the relative performance of algorithms for measuring tumor change in response to therapy. In this setting, we describe specifically the example of measurement of tumor volume change from anatomic imaging as well as provide an overview of other promising generic analytic methods that can be used to assess change in heterogeneous tumors. To support assessment of the relative performance of algorithms for measuring small tumor change, data sources of truth are required. RESULTS: Very short interval clinical imaging examinations and phantom scans provide known truth for comparative evaluation of algorithms. CONCLUSIONS: For a given category of measurement methods, the algorithm that has the smallest measurement noise and least bias on average will perform best in early detection of true tumor change.</description><identifier>ISSN: 1936-5233</identifier><identifier>EISSN: 1936-5233</identifier><identifier>DOI: 10.1593/tlo.09208</identifier><identifier>PMID: 19956379</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><ispartof>Translational oncology, 2009-12, Vol.2 (4), p.198-210</ispartof><rights>2009 Neoplasia Press, Inc.</rights><rights>Copyright © 2009 Neoplasia Press, Inc. All rights reserved</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c484t-221457701737ab70e7930a648784ef653e9264d79a54e4a6d7ca5ea77f3d16683</citedby><cites>FETCH-LOGICAL-c484t-221457701737ab70e7930a648784ef653e9264d79a54e4a6d7ca5ea77f3d16683</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781075/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2781075/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,860,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19956379$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Meyer, Charles R.</creatorcontrib><creatorcontrib>Armato, Samuel G.</creatorcontrib><creatorcontrib>Fenimore, Charles P.</creatorcontrib><creatorcontrib>McLennan, Geoffrey</creatorcontrib><creatorcontrib>Bidautn, Luc M.</creatorcontrib><creatorcontrib>Barboriak, Daniel P.</creatorcontrib><creatorcontrib>Gavrielides, Marios A.</creatorcontrib><creatorcontrib>Jackson, Edward F.</creatorcontrib><creatorcontrib>McNitt-Gray, Michael F.</creatorcontrib><creatorcontrib>Kinahan, Paul E.</creatorcontrib><creatorcontrib>Petrick, Nicholas</creatorcontrib><creatorcontrib>Zhao, Binsheng</creatorcontrib><title>Quantitative Imaging to Assess Tumor Response to Therapy: Common Themes of Measurement, Truth Data, and Error Sources</title><title>Translational oncology</title><addtitle>Transl Oncol</addtitle><description>RATIONALE: Early detection of tumor response to therapy is a key goal. Finding measurement algorithms capable of early detection of tumor response could individualize therapy treatment as well as reduce the cost of bringing new drugs to market. On an individual basis, the urgency arises from the desire to prevent continued treatment of the patient with a high-cost and/or high-risk regimen with no demonstrated individual benefit and rapidly switch the patient to an alternative efficacious therapy for that patient. In the context of bringing new drugs to market, such algorithms could demonstrate efficacy in much smaller populations, which would allow phase 3 trials to achieve statistically significant decisions with fewer subjects in shorter trials. MATERIALS AND METHODS: This consensus-based article describes multiple, image modality-independent means to assess the relative performance of algorithms for measuring tumor change in response to therapy. In this setting, we describe specifically the example of measurement of tumor volume change from anatomic imaging as well as provide an overview of other promising generic analytic methods that can be used to assess change in heterogeneous tumors. To support assessment of the relative performance of algorithms for measuring small tumor change, data sources of truth are required. RESULTS: Very short interval clinical imaging examinations and phantom scans provide known truth for comparative evaluation of algorithms. CONCLUSIONS: For a given category of measurement methods, the algorithm that has the smallest measurement noise and least bias on average will perform best in early detection of true tumor change.</description><issn>1936-5233</issn><issn>1936-5233</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNptkd9rFDEQx4MotlYf_AckbyL0arLJJhsfhHJWLVREPZ_DNDt7F9lNzvw46H_vnndoBZ8mw3z4zJAvIc85u-CtEa_LGC-YaVj3gJxyI9SibYR4eO99Qp7k_IMxxU3TPCYn3JhWCW1OSf1SIRRfoPgd0usJ1j6saYn0MmfMma7qFBP9inkbQ8b9YLXBBNu7N3QZpymGfT9hpnGgnxByTXMXyjldpVo29B0UOKcQenqV0iz6FmtymJ-SRwOMGZ8d6xn5_v5qtfy4uPn84Xp5ebNwspNl0TRctlozroWGW81QG8FAyU53EgfVCjSNkr020EqUoHrtoEXQehA9V6oTZ-TtwbuttxP2br4swWi3yU-Q7mwEb_-dBL-x67izje440-0seHkUpPizYi528tnhOELAWLPVQnLVNYbN5KsD6VLMOeHwZwtndp-SnVOyv1Oa2Rf3z_pLHmOZAXEAcP6cncdks_MYHPY-oSu2j_4_2l9J0qBn</recordid><startdate>20091201</startdate><enddate>20091201</enddate><creator>Meyer, Charles R.</creator><creator>Armato, Samuel G.</creator><creator>Fenimore, Charles P.</creator><creator>McLennan, Geoffrey</creator><creator>Bidautn, Luc M.</creator><creator>Barboriak, Daniel P.</creator><creator>Gavrielides, Marios A.</creator><creator>Jackson, Edward F.</creator><creator>McNitt-Gray, Michael F.</creator><creator>Kinahan, Paul E.</creator><creator>Petrick, Nicholas</creator><creator>Zhao, Binsheng</creator><general>Elsevier Inc</general><general>Neoplasia Press Inc</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091201</creationdate><title>Quantitative Imaging to Assess Tumor Response to Therapy: Common Themes of Measurement, Truth Data, and Error Sources</title><author>Meyer, Charles R. ; Armato, Samuel G. ; Fenimore, Charles P. ; McLennan, Geoffrey ; Bidautn, Luc M. ; Barboriak, Daniel P. ; Gavrielides, Marios A. ; Jackson, Edward F. ; McNitt-Gray, Michael F. ; Kinahan, Paul E. ; Petrick, Nicholas ; Zhao, Binsheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c484t-221457701737ab70e7930a648784ef653e9264d79a54e4a6d7ca5ea77f3d16683</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Meyer, Charles R.</creatorcontrib><creatorcontrib>Armato, Samuel G.</creatorcontrib><creatorcontrib>Fenimore, Charles P.</creatorcontrib><creatorcontrib>McLennan, Geoffrey</creatorcontrib><creatorcontrib>Bidautn, Luc M.</creatorcontrib><creatorcontrib>Barboriak, Daniel P.</creatorcontrib><creatorcontrib>Gavrielides, Marios A.</creatorcontrib><creatorcontrib>Jackson, Edward F.</creatorcontrib><creatorcontrib>McNitt-Gray, Michael F.</creatorcontrib><creatorcontrib>Kinahan, Paul E.</creatorcontrib><creatorcontrib>Petrick, Nicholas</creatorcontrib><creatorcontrib>Zhao, Binsheng</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Translational oncology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Meyer, Charles R.</au><au>Armato, Samuel G.</au><au>Fenimore, Charles P.</au><au>McLennan, Geoffrey</au><au>Bidautn, Luc M.</au><au>Barboriak, Daniel P.</au><au>Gavrielides, Marios A.</au><au>Jackson, Edward F.</au><au>McNitt-Gray, Michael F.</au><au>Kinahan, Paul E.</au><au>Petrick, Nicholas</au><au>Zhao, Binsheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantitative Imaging to Assess Tumor Response to Therapy: Common Themes of Measurement, Truth Data, and Error Sources</atitle><jtitle>Translational oncology</jtitle><addtitle>Transl Oncol</addtitle><date>2009-12-01</date><risdate>2009</risdate><volume>2</volume><issue>4</issue><spage>198</spage><epage>210</epage><pages>198-210</pages><issn>1936-5233</issn><eissn>1936-5233</eissn><abstract>RATIONALE: Early detection of tumor response to therapy is a key goal. Finding measurement algorithms capable of early detection of tumor response could individualize therapy treatment as well as reduce the cost of bringing new drugs to market. On an individual basis, the urgency arises from the desire to prevent continued treatment of the patient with a high-cost and/or high-risk regimen with no demonstrated individual benefit and rapidly switch the patient to an alternative efficacious therapy for that patient. In the context of bringing new drugs to market, such algorithms could demonstrate efficacy in much smaller populations, which would allow phase 3 trials to achieve statistically significant decisions with fewer subjects in shorter trials. MATERIALS AND METHODS: This consensus-based article describes multiple, image modality-independent means to assess the relative performance of algorithms for measuring tumor change in response to therapy. In this setting, we describe specifically the example of measurement of tumor volume change from anatomic imaging as well as provide an overview of other promising generic analytic methods that can be used to assess change in heterogeneous tumors. To support assessment of the relative performance of algorithms for measuring small tumor change, data sources of truth are required. RESULTS: Very short interval clinical imaging examinations and phantom scans provide known truth for comparative evaluation of algorithms. CONCLUSIONS: For a given category of measurement methods, the algorithm that has the smallest measurement noise and least bias on average will perform best in early detection of true tumor change.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19956379</pmid><doi>10.1593/tlo.09208</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1936-5233 |
ispartof | Translational oncology, 2009-12, Vol.2 (4), p.198-210 |
issn | 1936-5233 1936-5233 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2781075 |
source | DOAJ Directory of Open Access Journals; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
title | Quantitative Imaging to Assess Tumor Response to Therapy: Common Themes of Measurement, Truth Data, and Error Sources |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-02T05%3A52%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantitative%20Imaging%20to%20Assess%20Tumor%20Response%20to%20Therapy:%20Common%20Themes%20of%20Measurement,%20Truth%20Data,%20and%20Error%20Sources&rft.jtitle=Translational%20oncology&rft.au=Meyer,%20Charles%20R.&rft.date=2009-12-01&rft.volume=2&rft.issue=4&rft.spage=198&rft.epage=210&rft.pages=198-210&rft.issn=1936-5233&rft.eissn=1936-5233&rft_id=info:doi/10.1593/tlo.09208&rft_dat=%3Cproquest_pubme%3E734168290%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=734168290&rft_id=info:pmid/19956379&rft_els_id=S1936523309800259&rfr_iscdi=true |