Genotype Matrix Mapping: Searching for Quantitative Trait Loci Interactions in Genetic Variation in Complex Traits

Abstract In order to reveal quantitative trait loci (QTL) interactions and the relationship between various interactions in complex traits, we have developed a new QTL mapping approach, named genotype matrix mapping (GMM), which searches for QTL interactions in genetic variation. The central approac...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:DNA research 2007-10, Vol.14 (5), p.217-225
Hauptverfasser: Isobe, Sachiko, Nakaya, Akihiro, Tabata, Satoshi
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext bestellen
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 225
container_issue 5
container_start_page 217
container_title DNA research
container_volume 14
creator Isobe, Sachiko
Nakaya, Akihiro
Tabata, Satoshi
description Abstract In order to reveal quantitative trait loci (QTL) interactions and the relationship between various interactions in complex traits, we have developed a new QTL mapping approach, named genotype matrix mapping (GMM), which searches for QTL interactions in genetic variation. The central approach in GMM is the following. (1) Each tested marker is given a virtual matrix, named a genotype matrix (GM), containing intersecting lines and rows equal to the total allele number for that marker in the population analyzed. (2) QTL interactions are then estimated and compared through virtual networks among the GMs. To evaluate the contribution of marker combinations to a quantitative phenotype, the GMM method divides the samples into two non-overlapping subclasses, S 0 and S 1; the former contains the samples that have a specific genotype pattern to be evaluated, and the latter contains samples that do not. Based on this division, the F-measure is calculated as an index of significance. With the GMM method, we extracted significant marker combinations consisting of one to three interacting markers. The results indicated there were multiple QTL interactions affecting the phenotype (flowering date). GMM will be a valuable approach to identify QTL interactions in genetic variation of a complex trait within a variety of organisms.
doi_str_mv 10.1093/dnares/dsm020
format Article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2779902</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/dnares/dsm020</oup_id><sourcerecordid>69043616</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-2e3fd7f2d2cd197fff1441c13b52f78584e853ada43f7a2216b56af0f85ef42a3</originalsourceid><addsrcrecordid>eNqFkk1v1DAQhi0Eou2WI1fkC6iXUH_FSTggoRWUSlsh1MLVmnXs1iixU9up2n-PV1lReqovM5p5_I6tdxB6S8lHSjp-2nuIJp32aSSMvECHtKllRaXkL0vOBalYy9sDdJTSH0IErXnzGh3QlpRDxSGKZ8aH_DAZfAE5uvsSpsn560_40kDUNyXFNkT8cwafXYbs7gy-iuAy3gTt8LnPJoLOLviEncdFzmSn8W-IDnbVXXEdxmkw98u9dIxeWRiSebOPK_Tr29er9fdq8-PsfP1lU2nRdLlihtu-saxnuqddY62lQlBN-bZmtmnrVpi25tCD4LYBxqjc1hIssW1trGDAV-jzojvN29H02vgcYVBTdCPEBxXAqacd727UdbhTrGm6jrAi8GEvEMPtbFJWo0vaDAN4E-akZEcEl1Q-CzIiJeXFrRWqFlDHkFI09t9rKFE7O9Vip1rsLPy7_7_wSO_9K8D7PQBJw2AjeO3SI9d1lJclKNzJwoV5embmXwDpuvU</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20661309</pqid></control><display><type>article</type><title>Genotype Matrix Mapping: Searching for Quantitative Trait Loci Interactions in Genetic Variation in Complex Traits</title><source>Oxford Journals Open Access Collection</source><creator>Isobe, Sachiko ; Nakaya, Akihiro ; Tabata, Satoshi</creator><contributor>Yano, M</contributor><creatorcontrib>Isobe, Sachiko ; Nakaya, Akihiro ; Tabata, Satoshi ; Yano, M</creatorcontrib><description>Abstract In order to reveal quantitative trait loci (QTL) interactions and the relationship between various interactions in complex traits, we have developed a new QTL mapping approach, named genotype matrix mapping (GMM), which searches for QTL interactions in genetic variation. The central approach in GMM is the following. (1) Each tested marker is given a virtual matrix, named a genotype matrix (GM), containing intersecting lines and rows equal to the total allele number for that marker in the population analyzed. (2) QTL interactions are then estimated and compared through virtual networks among the GMs. To evaluate the contribution of marker combinations to a quantitative phenotype, the GMM method divides the samples into two non-overlapping subclasses, S 0 and S 1; the former contains the samples that have a specific genotype pattern to be evaluated, and the latter contains samples that do not. Based on this division, the F-measure is calculated as an index of significance. With the GMM method, we extracted significant marker combinations consisting of one to three interacting markers. The results indicated there were multiple QTL interactions affecting the phenotype (flowering date). GMM will be a valuable approach to identify QTL interactions in genetic variation of a complex trait within a variety of organisms.</description><identifier>ISSN: 1340-2838</identifier><identifier>EISSN: 1756-1663</identifier><identifier>DOI: 10.1093/dnares/dsm020</identifier><identifier>PMID: 18000014</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Alleles ; Biological and medical sciences ; Chromosome Mapping - methods ; Chromosome Mapping - statistics &amp; numerical data ; Databases, Genetic ; Flowers - growth &amp; development ; Fundamental and applied biological sciences. Psychology ; Genes. Genome ; Genetic Markers ; Genetic Variation ; Genetics of eukaryotes. Biological and molecular evolution ; Genotype ; Models, Genetic ; Molecular and cellular biology ; Molecular genetics ; Phenotype ; Quantitative Trait Loci ; Trifolium - genetics ; Trifolium - growth &amp; development</subject><ispartof>DNA research, 2007-10, Vol.14 (5), p.217-225</ispartof><rights>The Author 2007. Kazusa DNA Research Institute. 2007</rights><rights>2008 INIST-CNRS</rights><rights>The Author 2007. Kazusa DNA Research Institute.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c479t-2e3fd7f2d2cd197fff1441c13b52f78584e853ada43f7a2216b56af0f85ef42a3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779902/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2779902/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27901,27902,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/dnares/dsm020$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=19913340$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18000014$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><contributor>Yano, M</contributor><creatorcontrib>Isobe, Sachiko</creatorcontrib><creatorcontrib>Nakaya, Akihiro</creatorcontrib><creatorcontrib>Tabata, Satoshi</creatorcontrib><title>Genotype Matrix Mapping: Searching for Quantitative Trait Loci Interactions in Genetic Variation in Complex Traits</title><title>DNA research</title><addtitle>DNA Res</addtitle><description>Abstract In order to reveal quantitative trait loci (QTL) interactions and the relationship between various interactions in complex traits, we have developed a new QTL mapping approach, named genotype matrix mapping (GMM), which searches for QTL interactions in genetic variation. The central approach in GMM is the following. (1) Each tested marker is given a virtual matrix, named a genotype matrix (GM), containing intersecting lines and rows equal to the total allele number for that marker in the population analyzed. (2) QTL interactions are then estimated and compared through virtual networks among the GMs. To evaluate the contribution of marker combinations to a quantitative phenotype, the GMM method divides the samples into two non-overlapping subclasses, S 0 and S 1; the former contains the samples that have a specific genotype pattern to be evaluated, and the latter contains samples that do not. Based on this division, the F-measure is calculated as an index of significance. With the GMM method, we extracted significant marker combinations consisting of one to three interacting markers. The results indicated there were multiple QTL interactions affecting the phenotype (flowering date). GMM will be a valuable approach to identify QTL interactions in genetic variation of a complex trait within a variety of organisms.</description><subject>Algorithms</subject><subject>Alleles</subject><subject>Biological and medical sciences</subject><subject>Chromosome Mapping - methods</subject><subject>Chromosome Mapping - statistics &amp; numerical data</subject><subject>Databases, Genetic</subject><subject>Flowers - growth &amp; development</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Genes. Genome</subject><subject>Genetic Markers</subject><subject>Genetic Variation</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Genotype</subject><subject>Models, Genetic</subject><subject>Molecular and cellular biology</subject><subject>Molecular genetics</subject><subject>Phenotype</subject><subject>Quantitative Trait Loci</subject><subject>Trifolium - genetics</subject><subject>Trifolium - growth &amp; development</subject><issn>1340-2838</issn><issn>1756-1663</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2007</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk1v1DAQhi0Eou2WI1fkC6iXUH_FSTggoRWUSlsh1MLVmnXs1iixU9up2n-PV1lReqovM5p5_I6tdxB6S8lHSjp-2nuIJp32aSSMvECHtKllRaXkL0vOBalYy9sDdJTSH0IErXnzGh3QlpRDxSGKZ8aH_DAZfAE5uvsSpsn560_40kDUNyXFNkT8cwafXYbs7gy-iuAy3gTt8LnPJoLOLviEncdFzmSn8W-IDnbVXXEdxmkw98u9dIxeWRiSebOPK_Tr29er9fdq8-PsfP1lU2nRdLlihtu-saxnuqddY62lQlBN-bZmtmnrVpi25tCD4LYBxqjc1hIssW1trGDAV-jzojvN29H02vgcYVBTdCPEBxXAqacd727UdbhTrGm6jrAi8GEvEMPtbFJWo0vaDAN4E-akZEcEl1Q-CzIiJeXFrRWqFlDHkFI09t9rKFE7O9Vip1rsLPy7_7_wSO_9K8D7PQBJw2AjeO3SI9d1lJclKNzJwoV5embmXwDpuvU</recordid><startdate>20071031</startdate><enddate>20071031</enddate><creator>Isobe, Sachiko</creator><creator>Nakaya, Akihiro</creator><creator>Tabata, Satoshi</creator><general>Oxford University Press</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20071031</creationdate><title>Genotype Matrix Mapping: Searching for Quantitative Trait Loci Interactions in Genetic Variation in Complex Traits</title><author>Isobe, Sachiko ; Nakaya, Akihiro ; Tabata, Satoshi</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-2e3fd7f2d2cd197fff1441c13b52f78584e853ada43f7a2216b56af0f85ef42a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2007</creationdate><topic>Algorithms</topic><topic>Alleles</topic><topic>Biological and medical sciences</topic><topic>Chromosome Mapping - methods</topic><topic>Chromosome Mapping - statistics &amp; numerical data</topic><topic>Databases, Genetic</topic><topic>Flowers - growth &amp; development</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Genes. Genome</topic><topic>Genetic Markers</topic><topic>Genetic Variation</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Genotype</topic><topic>Models, Genetic</topic><topic>Molecular and cellular biology</topic><topic>Molecular genetics</topic><topic>Phenotype</topic><topic>Quantitative Trait Loci</topic><topic>Trifolium - genetics</topic><topic>Trifolium - growth &amp; development</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Isobe, Sachiko</creatorcontrib><creatorcontrib>Nakaya, Akihiro</creatorcontrib><creatorcontrib>Tabata, Satoshi</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>DNA research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Isobe, Sachiko</au><au>Nakaya, Akihiro</au><au>Tabata, Satoshi</au><au>Yano, M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genotype Matrix Mapping: Searching for Quantitative Trait Loci Interactions in Genetic Variation in Complex Traits</atitle><jtitle>DNA research</jtitle><addtitle>DNA Res</addtitle><date>2007-10-31</date><risdate>2007</risdate><volume>14</volume><issue>5</issue><spage>217</spage><epage>225</epage><pages>217-225</pages><issn>1340-2838</issn><eissn>1756-1663</eissn><abstract>Abstract In order to reveal quantitative trait loci (QTL) interactions and the relationship between various interactions in complex traits, we have developed a new QTL mapping approach, named genotype matrix mapping (GMM), which searches for QTL interactions in genetic variation. The central approach in GMM is the following. (1) Each tested marker is given a virtual matrix, named a genotype matrix (GM), containing intersecting lines and rows equal to the total allele number for that marker in the population analyzed. (2) QTL interactions are then estimated and compared through virtual networks among the GMs. To evaluate the contribution of marker combinations to a quantitative phenotype, the GMM method divides the samples into two non-overlapping subclasses, S 0 and S 1; the former contains the samples that have a specific genotype pattern to be evaluated, and the latter contains samples that do not. Based on this division, the F-measure is calculated as an index of significance. With the GMM method, we extracted significant marker combinations consisting of one to three interacting markers. The results indicated there were multiple QTL interactions affecting the phenotype (flowering date). GMM will be a valuable approach to identify QTL interactions in genetic variation of a complex trait within a variety of organisms.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>18000014</pmid><doi>10.1093/dnares/dsm020</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1340-2838
ispartof DNA research, 2007-10, Vol.14 (5), p.217-225
issn 1340-2838
1756-1663
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2779902
source Oxford Journals Open Access Collection
subjects Algorithms
Alleles
Biological and medical sciences
Chromosome Mapping - methods
Chromosome Mapping - statistics & numerical data
Databases, Genetic
Flowers - growth & development
Fundamental and applied biological sciences. Psychology
Genes. Genome
Genetic Markers
Genetic Variation
Genetics of eukaryotes. Biological and molecular evolution
Genotype
Models, Genetic
Molecular and cellular biology
Molecular genetics
Phenotype
Quantitative Trait Loci
Trifolium - genetics
Trifolium - growth & development
title Genotype Matrix Mapping: Searching for Quantitative Trait Loci Interactions in Genetic Variation in Complex Traits
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-05T03%3A04%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genotype%20Matrix%20Mapping:%20Searching%20for%20Quantitative%20Trait%20Loci%20Interactions%20in%20Genetic%20Variation%20in%20Complex%20Traits&rft.jtitle=DNA%20research&rft.au=Isobe,%20Sachiko&rft.date=2007-10-31&rft.volume=14&rft.issue=5&rft.spage=217&rft.epage=225&rft.pages=217-225&rft.issn=1340-2838&rft.eissn=1756-1663&rft_id=info:doi/10.1093/dnares/dsm020&rft_dat=%3Cproquest_TOX%3E69043616%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20661309&rft_id=info:pmid/18000014&rft_oup_id=10.1093/dnares/dsm020&rfr_iscdi=true