A replication clock for Mycobacterium tuberculosis

Few tools exist to assess replication of chronic pathogens during infection. This has been a considerable barrier to understanding latent tuberculosis, and efforts to develop new therapies generally assume that the bacteria are very slowly replicating or nonreplicating during latency. To monitor Myc...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature medicine 2009-02, Vol.15 (2), p.211-214
Hauptverfasser: Sherman, David R, Liao, Reiling P, Mittler, John E, Whiddon, Molly R, Gill, Wendy P, Harik, Nada S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 214
container_issue 2
container_start_page 211
container_title Nature medicine
container_volume 15
creator Sherman, David R
Liao, Reiling P
Mittler, John E
Whiddon, Molly R
Gill, Wendy P
Harik, Nada S
description Few tools exist to assess replication of chronic pathogens during infection. This has been a considerable barrier to understanding latent tuberculosis, and efforts to develop new therapies generally assume that the bacteria are very slowly replicating or nonreplicating during latency. To monitor Mycobacterium tuberculosis replication within hosts, we exploit an unstable plasmid that is lost at a steady, quantifiable rate from dividing cells in the absence of antibiotic selection. By applying a mathematical model, we calculate bacterial growth and death rates during infection of mice. We show that during chronic infection, the cumulative bacterial burden-enumerating total live, dead and removed organisms encountered by the mouse lung-is substantially higher than estimates from colony-forming units. Our data show that M. tuberculosis replicates throughout the course of chronic infection of mice and is restrained by the host immune system. This approach may also shed light on the replication dynamics of other chronic pathogens.
doi_str_mv 10.1038/nm.1915
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2779834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A194904963</galeid><sourcerecordid>A194904963</sourcerecordid><originalsourceid>FETCH-LOGICAL-c722t-81d296dd8e06fe25185283afeba69e68b25757c2dd679554199cbe5aef74e33c3</originalsourceid><addsrcrecordid>eNqN0l1r1TAYB_AiiptT_ARK2cXUix7z0qTJjXAYUweTgW94F9L0aU9mmxyTVrZvbw49bjs6UHqRkueXP3l5suwpRguMqHjthgWWmN3L9jEreYEr9O1--keVKIRkfC97FOMFQogiJh9me8kKUkmxn5FlHmDdW6NH611uem--560P-Ycr42ttRgh2GvJxqiGYqffRxsfZg1b3EZ5sx4Psy9uTz8fvi7Pzd6fHy7PCVISMhcANkbxpBCDeAmFYMCKobqHWXAIXNWEVqwxpGl5JxkospamBaWirEig19CB7M-eup3qAxoAbg-7VOthBhyvltVW7FWdXqvM_FanS0WiZAo62AcH_mCCOarDRQN9rB36KinMhsUTyn5AgWnIhUIKHf8ALPwWXbkERQjHGgouEihl1ugdlXevT7kwHDtImvYPWpukllqVEpeQ0-cUdPn0NDNbcueDVzoJkRrgcOz3FqE4_ffx_e_511x7dsivQ_biKvp82nRF34YsZmuBjDNBePwpGatOPyg1q049JPr_9hjdu24AJvJxBTCXXQbi50b-zns3U6XEKcJ31u_4LkZXvKg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223111868</pqid></control><display><type>article</type><title>A replication clock for Mycobacterium tuberculosis</title><source>MEDLINE</source><source>Nature</source><source>SpringerLink Journals - AutoHoldings</source><creator>Sherman, David R ; Liao, Reiling P ; Mittler, John E ; Whiddon, Molly R ; Gill, Wendy P ; Harik, Nada S</creator><creatorcontrib>Sherman, David R ; Liao, Reiling P ; Mittler, John E ; Whiddon, Molly R ; Gill, Wendy P ; Harik, Nada S</creatorcontrib><description>Few tools exist to assess replication of chronic pathogens during infection. This has been a considerable barrier to understanding latent tuberculosis, and efforts to develop new therapies generally assume that the bacteria are very slowly replicating or nonreplicating during latency. To monitor Mycobacterium tuberculosis replication within hosts, we exploit an unstable plasmid that is lost at a steady, quantifiable rate from dividing cells in the absence of antibiotic selection. By applying a mathematical model, we calculate bacterial growth and death rates during infection of mice. We show that during chronic infection, the cumulative bacterial burden-enumerating total live, dead and removed organisms encountered by the mouse lung-is substantially higher than estimates from colony-forming units. Our data show that M. tuberculosis replicates throughout the course of chronic infection of mice and is restrained by the host immune system. This approach may also shed light on the replication dynamics of other chronic pathogens.</description><identifier>ISSN: 1078-8956</identifier><identifier>EISSN: 1546-170X</identifier><identifier>DOI: 10.1038/nm.1915</identifier><identifier>PMID: 19182798</identifier><language>eng</language><publisher>New York: Nature Publishing Group US</publisher><subject>Animals ; Bacteria ; Bacteriology ; Base Sequence ; Biomedical and Life Sciences ; Biomedicine ; Cancer Research ; Cell growth ; Colony Count, Microbial ; Cultures and culture media ; DNA Primers ; DNA replication ; Health aspects ; Immune system ; Infectious Diseases ; letter ; Metabolic Diseases ; Methods ; Mice ; Mice, Inbred C57BL ; Molecular Medicine ; Mortality ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - growth &amp; development ; Neurosciences ; Pathogens ; Physiological aspects ; Plasmids ; Polymerase Chain Reaction ; Rodents ; Tuberculosis ; Tuberculosis - microbiology ; Tuberculosis - physiopathology</subject><ispartof>Nature medicine, 2009-02, Vol.15 (2), p.211-214</ispartof><rights>Springer Nature America, Inc. 2009</rights><rights>COPYRIGHT 2009 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Feb 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c722t-81d296dd8e06fe25185283afeba69e68b25757c2dd679554199cbe5aef74e33c3</citedby><cites>FETCH-LOGICAL-c722t-81d296dd8e06fe25185283afeba69e68b25757c2dd679554199cbe5aef74e33c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1038/nm.1915$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1038/nm.1915$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,2727,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19182798$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sherman, David R</creatorcontrib><creatorcontrib>Liao, Reiling P</creatorcontrib><creatorcontrib>Mittler, John E</creatorcontrib><creatorcontrib>Whiddon, Molly R</creatorcontrib><creatorcontrib>Gill, Wendy P</creatorcontrib><creatorcontrib>Harik, Nada S</creatorcontrib><title>A replication clock for Mycobacterium tuberculosis</title><title>Nature medicine</title><addtitle>Nat Med</addtitle><addtitle>Nat Med</addtitle><description>Few tools exist to assess replication of chronic pathogens during infection. This has been a considerable barrier to understanding latent tuberculosis, and efforts to develop new therapies generally assume that the bacteria are very slowly replicating or nonreplicating during latency. To monitor Mycobacterium tuberculosis replication within hosts, we exploit an unstable plasmid that is lost at a steady, quantifiable rate from dividing cells in the absence of antibiotic selection. By applying a mathematical model, we calculate bacterial growth and death rates during infection of mice. We show that during chronic infection, the cumulative bacterial burden-enumerating total live, dead and removed organisms encountered by the mouse lung-is substantially higher than estimates from colony-forming units. Our data show that M. tuberculosis replicates throughout the course of chronic infection of mice and is restrained by the host immune system. This approach may also shed light on the replication dynamics of other chronic pathogens.</description><subject>Animals</subject><subject>Bacteria</subject><subject>Bacteriology</subject><subject>Base Sequence</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedicine</subject><subject>Cancer Research</subject><subject>Cell growth</subject><subject>Colony Count, Microbial</subject><subject>Cultures and culture media</subject><subject>DNA Primers</subject><subject>DNA replication</subject><subject>Health aspects</subject><subject>Immune system</subject><subject>Infectious Diseases</subject><subject>letter</subject><subject>Metabolic Diseases</subject><subject>Methods</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Molecular Medicine</subject><subject>Mortality</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - growth &amp; development</subject><subject>Neurosciences</subject><subject>Pathogens</subject><subject>Physiological aspects</subject><subject>Plasmids</subject><subject>Polymerase Chain Reaction</subject><subject>Rodents</subject><subject>Tuberculosis</subject><subject>Tuberculosis - microbiology</subject><subject>Tuberculosis - physiopathology</subject><issn>1078-8956</issn><issn>1546-170X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqN0l1r1TAYB_AiiptT_ARK2cXUix7z0qTJjXAYUweTgW94F9L0aU9mmxyTVrZvbw49bjs6UHqRkueXP3l5suwpRguMqHjthgWWmN3L9jEreYEr9O1--keVKIRkfC97FOMFQogiJh9me8kKUkmxn5FlHmDdW6NH611uem--560P-Ycr42ttRgh2GvJxqiGYqffRxsfZg1b3EZ5sx4Psy9uTz8fvi7Pzd6fHy7PCVISMhcANkbxpBCDeAmFYMCKobqHWXAIXNWEVqwxpGl5JxkospamBaWirEig19CB7M-eup3qAxoAbg-7VOthBhyvltVW7FWdXqvM_FanS0WiZAo62AcH_mCCOarDRQN9rB36KinMhsUTyn5AgWnIhUIKHf8ALPwWXbkERQjHGgouEihl1ugdlXevT7kwHDtImvYPWpukllqVEpeQ0-cUdPn0NDNbcueDVzoJkRrgcOz3FqE4_ffx_e_511x7dsivQ_biKvp82nRF34YsZmuBjDNBePwpGatOPyg1q049JPr_9hjdu24AJvJxBTCXXQbi50b-zns3U6XEKcJ31u_4LkZXvKg</recordid><startdate>20090201</startdate><enddate>20090201</enddate><creator>Sherman, David R</creator><creator>Liao, Reiling P</creator><creator>Mittler, John E</creator><creator>Whiddon, Molly R</creator><creator>Gill, Wendy P</creator><creator>Harik, Nada S</creator><general>Nature Publishing Group US</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U7</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7T7</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090201</creationdate><title>A replication clock for Mycobacterium tuberculosis</title><author>Sherman, David R ; Liao, Reiling P ; Mittler, John E ; Whiddon, Molly R ; Gill, Wendy P ; Harik, Nada S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c722t-81d296dd8e06fe25185283afeba69e68b25757c2dd679554199cbe5aef74e33c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Bacteria</topic><topic>Bacteriology</topic><topic>Base Sequence</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedicine</topic><topic>Cancer Research</topic><topic>Cell growth</topic><topic>Colony Count, Microbial</topic><topic>Cultures and culture media</topic><topic>DNA Primers</topic><topic>DNA replication</topic><topic>Health aspects</topic><topic>Immune system</topic><topic>Infectious Diseases</topic><topic>letter</topic><topic>Metabolic Diseases</topic><topic>Methods</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Molecular Medicine</topic><topic>Mortality</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - growth &amp; development</topic><topic>Neurosciences</topic><topic>Pathogens</topic><topic>Physiological aspects</topic><topic>Plasmids</topic><topic>Polymerase Chain Reaction</topic><topic>Rodents</topic><topic>Tuberculosis</topic><topic>Tuberculosis - microbiology</topic><topic>Tuberculosis - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sherman, David R</creatorcontrib><creatorcontrib>Liao, Reiling P</creatorcontrib><creatorcontrib>Mittler, John E</creatorcontrib><creatorcontrib>Whiddon, Molly R</creatorcontrib><creatorcontrib>Gill, Wendy P</creatorcontrib><creatorcontrib>Harik, Nada S</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sherman, David R</au><au>Liao, Reiling P</au><au>Mittler, John E</au><au>Whiddon, Molly R</au><au>Gill, Wendy P</au><au>Harik, Nada S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A replication clock for Mycobacterium tuberculosis</atitle><jtitle>Nature medicine</jtitle><stitle>Nat Med</stitle><addtitle>Nat Med</addtitle><date>2009-02-01</date><risdate>2009</risdate><volume>15</volume><issue>2</issue><spage>211</spage><epage>214</epage><pages>211-214</pages><issn>1078-8956</issn><eissn>1546-170X</eissn><abstract>Few tools exist to assess replication of chronic pathogens during infection. This has been a considerable barrier to understanding latent tuberculosis, and efforts to develop new therapies generally assume that the bacteria are very slowly replicating or nonreplicating during latency. To monitor Mycobacterium tuberculosis replication within hosts, we exploit an unstable plasmid that is lost at a steady, quantifiable rate from dividing cells in the absence of antibiotic selection. By applying a mathematical model, we calculate bacterial growth and death rates during infection of mice. We show that during chronic infection, the cumulative bacterial burden-enumerating total live, dead and removed organisms encountered by the mouse lung-is substantially higher than estimates from colony-forming units. Our data show that M. tuberculosis replicates throughout the course of chronic infection of mice and is restrained by the host immune system. This approach may also shed light on the replication dynamics of other chronic pathogens.</abstract><cop>New York</cop><pub>Nature Publishing Group US</pub><pmid>19182798</pmid><doi>10.1038/nm.1915</doi><tpages>4</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1078-8956
ispartof Nature medicine, 2009-02, Vol.15 (2), p.211-214
issn 1078-8956
1546-170X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2779834
source MEDLINE; Nature; SpringerLink Journals - AutoHoldings
subjects Animals
Bacteria
Bacteriology
Base Sequence
Biomedical and Life Sciences
Biomedicine
Cancer Research
Cell growth
Colony Count, Microbial
Cultures and culture media
DNA Primers
DNA replication
Health aspects
Immune system
Infectious Diseases
letter
Metabolic Diseases
Methods
Mice
Mice, Inbred C57BL
Molecular Medicine
Mortality
Mycobacterium tuberculosis
Mycobacterium tuberculosis - growth & development
Neurosciences
Pathogens
Physiological aspects
Plasmids
Polymerase Chain Reaction
Rodents
Tuberculosis
Tuberculosis - microbiology
Tuberculosis - physiopathology
title A replication clock for Mycobacterium tuberculosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-01T04%3A25%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20replication%20clock%20for%20Mycobacterium%20tuberculosis&rft.jtitle=Nature%20medicine&rft.au=Sherman,%20David%20R&rft.date=2009-02-01&rft.volume=15&rft.issue=2&rft.spage=211&rft.epage=214&rft.pages=211-214&rft.issn=1078-8956&rft.eissn=1546-170X&rft_id=info:doi/10.1038/nm.1915&rft_dat=%3Cgale_pubme%3EA194904963%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=223111868&rft_id=info:pmid/19182798&rft_galeid=A194904963&rfr_iscdi=true