Probing the conformation of the resting state of a bacterial multidrug ABC transporter, BmrA, by a site‐directed spin labeling approach
Previously published 3‐D structures of a prototypic ATP‐binding cassette (ABC) transporter, MsbA, have been recently corrected revealing large rigid‐body motions possibly linked to its catalytic cycle. Here, a closely related multidrug bacterial ABC transporter, BmrA, was studied using site‐directed...
Gespeichert in:
Veröffentlicht in: | Protein science 2009-07, Vol.18 (7), p.1507-1520 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1520 |
---|---|
container_issue | 7 |
container_start_page | 1507 |
container_title | Protein science |
container_volume | 18 |
creator | Do Cao, Marie‐Ange Crouzy, Serge Kim, Miyeon Becchi, Michel Cafiso, David S. Pietro, Attilio Di Jault, Jean‐Michel |
description | Previously published 3‐D structures of a prototypic ATP‐binding cassette (ABC) transporter, MsbA, have been recently corrected revealing large rigid‐body motions possibly linked to its catalytic cycle. Here, a closely related multidrug bacterial ABC transporter, BmrA, was studied using site‐directed spin labeling by focusing on a region connecting the transmembrane domain and the nucleotide‐binding domain (NBD). Electron paramagnetic resonance (EPR) spectra of single spin‐labeled cysteine mutants suggests that, in the resting state, this sub‐domain essentially adopts a partially extended conformation, which is consistent with the crystal structures of MsbA and Sav1866. Interestingly, one of the single point mutants (Q333C) yielded an immobilized EPR spectrum that could arise from a direct interaction with a vicinal tyrosine residue. Inspection of different BmrA models pointed to Y408, within the NBD, as the putative interacting partner, and its mutation to a Phe residue indeed dramatically modified the EPR spectra of the spin labeled Q333C. Moreover, unlike the Y408F mutation, the Y408A mutation abolished both ATPase activity and drug transport of BmrA, suggesting that a nonpolar bulky residue is required at this position. The spatial proximity of Q333 and Y408 was also confirmed by formation of a disulfide bond when both Q333 and T407 (or S409) were replaced jointly by a cysteine residue. Overall, these results indicate that the two regions surrounding Q333 and Y408 are close together in the 3‐D structure of BmrA and that residues within these two sub‐domains are essential for proper functioning of this transporter. |
doi_str_mv | 10.1002/pro.141 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2775218</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1534812674</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4701-7c23d20427d6c589880161a0379830d7cc7dcedd62c0623717e0466e1ce20d4f3</originalsourceid><addsrcrecordid>eNp1kc2KFDEQgIMo7riKbyC5qbi9ptKZpPsizA7qCgO7iIK3kE7SM5F0p026V-bm1ZvP6JOYdgb_wFNI1VdfVVIIPQRyDoTQ50MM58DgFloA43VR1fzDbbQgNYeiKnl1gu6l9JEQwoCWd9EJ1EzUgsICfb2OoXH9Fo87i3Xo2xA7NbrQ49D-jEWbxjmfRjXaOahwo_Roo1Med5MfnYnTFq8u1niMqk9DiDl5hi-6uDrDzT7zyY32-5dvxkWbCw1Og-uxV431s1gNeXild_fRnVb5ZB8cz1P0_tXLd-vLYnP1-s16tSk0EwQKoWlpKGFUGK6XVV1VBDgoUoq6KokRWgujrTGcasJpKUBYwji3oC0lhrXlKXpx8A5T09nM9nluL4foOhX3Mign_870bie34UZSIZYUqix4ehDs_im7XG3kHCOkrIEC3EBmnxybxfBpyl8pO5e09V71NkxJwrJkFVAuWEYfH1AdQ0rRtr_cQOS85HwPMi85k4_-fMFv7rjVDDw7AJ-dt_v_eeT126tZ9wMtULIZ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1534812674</pqid></control><display><type>article</type><title>Probing the conformation of the resting state of a bacterial multidrug ABC transporter, BmrA, by a site‐directed spin labeling approach</title><source>MEDLINE</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Wiley Online Library All Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Do Cao, Marie‐Ange ; Crouzy, Serge ; Kim, Miyeon ; Becchi, Michel ; Cafiso, David S. ; Pietro, Attilio Di ; Jault, Jean‐Michel</creator><creatorcontrib>Do Cao, Marie‐Ange ; Crouzy, Serge ; Kim, Miyeon ; Becchi, Michel ; Cafiso, David S. ; Pietro, Attilio Di ; Jault, Jean‐Michel</creatorcontrib><description>Previously published 3‐D structures of a prototypic ATP‐binding cassette (ABC) transporter, MsbA, have been recently corrected revealing large rigid‐body motions possibly linked to its catalytic cycle. Here, a closely related multidrug bacterial ABC transporter, BmrA, was studied using site‐directed spin labeling by focusing on a region connecting the transmembrane domain and the nucleotide‐binding domain (NBD). Electron paramagnetic resonance (EPR) spectra of single spin‐labeled cysteine mutants suggests that, in the resting state, this sub‐domain essentially adopts a partially extended conformation, which is consistent with the crystal structures of MsbA and Sav1866. Interestingly, one of the single point mutants (Q333C) yielded an immobilized EPR spectrum that could arise from a direct interaction with a vicinal tyrosine residue. Inspection of different BmrA models pointed to Y408, within the NBD, as the putative interacting partner, and its mutation to a Phe residue indeed dramatically modified the EPR spectra of the spin labeled Q333C. Moreover, unlike the Y408F mutation, the Y408A mutation abolished both ATPase activity and drug transport of BmrA, suggesting that a nonpolar bulky residue is required at this position. The spatial proximity of Q333 and Y408 was also confirmed by formation of a disulfide bond when both Q333 and T407 (or S409) were replaced jointly by a cysteine residue. Overall, these results indicate that the two regions surrounding Q333 and Y408 are close together in the 3‐D structure of BmrA and that residues within these two sub‐domains are essential for proper functioning of this transporter.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.141</identifier><identifier>PMID: 19479721</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>ABC transporter ; Amino Acid Sequence ; ATP-Binding Cassette Transporters - chemistry ; ATP-Binding Cassette Transporters - genetics ; ATP-Binding Cassette Transporters - metabolism ; Bacteria ; Biochemistry, Molecular Biology ; Cysteine - metabolism ; Drug Resistance, Multiple, Bacterial - genetics ; electron paramagnetic resonance ; Electron Spin Resonance Spectroscopy ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; Life Sciences ; Models, Molecular ; Molecular Sequence Data ; multidrug transporter ; Mutagenesis, Site-Directed - methods ; Mutation ; Protein Conformation ; resting state ; Sequence Alignment ; site‐directed spin labeling ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Spin Labels ; Structural Biology</subject><ispartof>Protein science, 2009-07, Vol.18 (7), p.1507-1520</ispartof><rights>Copyright © 2009 The Protein Society</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4701-7c23d20427d6c589880161a0379830d7cc7dcedd62c0623717e0466e1ce20d4f3</citedby><cites>FETCH-LOGICAL-c4701-7c23d20427d6c589880161a0379830d7cc7dcedd62c0623717e0466e1ce20d4f3</cites><orcidid>0000-0003-1743-2777</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775218/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2775218/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27924,27925,45574,45575,46409,46833,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19479721$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/hal-00391211$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Do Cao, Marie‐Ange</creatorcontrib><creatorcontrib>Crouzy, Serge</creatorcontrib><creatorcontrib>Kim, Miyeon</creatorcontrib><creatorcontrib>Becchi, Michel</creatorcontrib><creatorcontrib>Cafiso, David S.</creatorcontrib><creatorcontrib>Pietro, Attilio Di</creatorcontrib><creatorcontrib>Jault, Jean‐Michel</creatorcontrib><title>Probing the conformation of the resting state of a bacterial multidrug ABC transporter, BmrA, by a site‐directed spin labeling approach</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Previously published 3‐D structures of a prototypic ATP‐binding cassette (ABC) transporter, MsbA, have been recently corrected revealing large rigid‐body motions possibly linked to its catalytic cycle. Here, a closely related multidrug bacterial ABC transporter, BmrA, was studied using site‐directed spin labeling by focusing on a region connecting the transmembrane domain and the nucleotide‐binding domain (NBD). Electron paramagnetic resonance (EPR) spectra of single spin‐labeled cysteine mutants suggests that, in the resting state, this sub‐domain essentially adopts a partially extended conformation, which is consistent with the crystal structures of MsbA and Sav1866. Interestingly, one of the single point mutants (Q333C) yielded an immobilized EPR spectrum that could arise from a direct interaction with a vicinal tyrosine residue. Inspection of different BmrA models pointed to Y408, within the NBD, as the putative interacting partner, and its mutation to a Phe residue indeed dramatically modified the EPR spectra of the spin labeled Q333C. Moreover, unlike the Y408F mutation, the Y408A mutation abolished both ATPase activity and drug transport of BmrA, suggesting that a nonpolar bulky residue is required at this position. The spatial proximity of Q333 and Y408 was also confirmed by formation of a disulfide bond when both Q333 and T407 (or S409) were replaced jointly by a cysteine residue. Overall, these results indicate that the two regions surrounding Q333 and Y408 are close together in the 3‐D structure of BmrA and that residues within these two sub‐domains are essential for proper functioning of this transporter.</description><subject>ABC transporter</subject><subject>Amino Acid Sequence</subject><subject>ATP-Binding Cassette Transporters - chemistry</subject><subject>ATP-Binding Cassette Transporters - genetics</subject><subject>ATP-Binding Cassette Transporters - metabolism</subject><subject>Bacteria</subject><subject>Biochemistry, Molecular Biology</subject><subject>Cysteine - metabolism</subject><subject>Drug Resistance, Multiple, Bacterial - genetics</subject><subject>electron paramagnetic resonance</subject><subject>Electron Spin Resonance Spectroscopy</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>Life Sciences</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>multidrug transporter</subject><subject>Mutagenesis, Site-Directed - methods</subject><subject>Mutation</subject><subject>Protein Conformation</subject><subject>resting state</subject><subject>Sequence Alignment</subject><subject>site‐directed spin labeling</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Spin Labels</subject><subject>Structural Biology</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kc2KFDEQgIMo7riKbyC5qbi9ptKZpPsizA7qCgO7iIK3kE7SM5F0p026V-bm1ZvP6JOYdgb_wFNI1VdfVVIIPQRyDoTQ50MM58DgFloA43VR1fzDbbQgNYeiKnl1gu6l9JEQwoCWd9EJ1EzUgsICfb2OoXH9Fo87i3Xo2xA7NbrQ49D-jEWbxjmfRjXaOahwo_Roo1Med5MfnYnTFq8u1niMqk9DiDl5hi-6uDrDzT7zyY32-5dvxkWbCw1Og-uxV431s1gNeXild_fRnVb5ZB8cz1P0_tXLd-vLYnP1-s16tSk0EwQKoWlpKGFUGK6XVV1VBDgoUoq6KokRWgujrTGcasJpKUBYwji3oC0lhrXlKXpx8A5T09nM9nluL4foOhX3Mign_870bie34UZSIZYUqix4ehDs_im7XG3kHCOkrIEC3EBmnxybxfBpyl8pO5e09V71NkxJwrJkFVAuWEYfH1AdQ0rRtr_cQOS85HwPMi85k4_-fMFv7rjVDDw7AJ-dt_v_eeT126tZ9wMtULIZ</recordid><startdate>200907</startdate><enddate>200907</enddate><creator>Do Cao, Marie‐Ange</creator><creator>Crouzy, Serge</creator><creator>Kim, Miyeon</creator><creator>Becchi, Michel</creator><creator>Cafiso, David S.</creator><creator>Pietro, Attilio Di</creator><creator>Jault, Jean‐Michel</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><general>Wiley</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>1XC</scope><scope>5PM</scope><orcidid>https://orcid.org/0000-0003-1743-2777</orcidid></search><sort><creationdate>200907</creationdate><title>Probing the conformation of the resting state of a bacterial multidrug ABC transporter, BmrA, by a site‐directed spin labeling approach</title><author>Do Cao, Marie‐Ange ; Crouzy, Serge ; Kim, Miyeon ; Becchi, Michel ; Cafiso, David S. ; Pietro, Attilio Di ; Jault, Jean‐Michel</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4701-7c23d20427d6c589880161a0379830d7cc7dcedd62c0623717e0466e1ce20d4f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>ABC transporter</topic><topic>Amino Acid Sequence</topic><topic>ATP-Binding Cassette Transporters - chemistry</topic><topic>ATP-Binding Cassette Transporters - genetics</topic><topic>ATP-Binding Cassette Transporters - metabolism</topic><topic>Bacteria</topic><topic>Biochemistry, Molecular Biology</topic><topic>Cysteine - metabolism</topic><topic>Drug Resistance, Multiple, Bacterial - genetics</topic><topic>electron paramagnetic resonance</topic><topic>Electron Spin Resonance Spectroscopy</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>Life Sciences</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>multidrug transporter</topic><topic>Mutagenesis, Site-Directed - methods</topic><topic>Mutation</topic><topic>Protein Conformation</topic><topic>resting state</topic><topic>Sequence Alignment</topic><topic>site‐directed spin labeling</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Spin Labels</topic><topic>Structural Biology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Do Cao, Marie‐Ange</creatorcontrib><creatorcontrib>Crouzy, Serge</creatorcontrib><creatorcontrib>Kim, Miyeon</creatorcontrib><creatorcontrib>Becchi, Michel</creatorcontrib><creatorcontrib>Cafiso, David S.</creatorcontrib><creatorcontrib>Pietro, Attilio Di</creatorcontrib><creatorcontrib>Jault, Jean‐Michel</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Do Cao, Marie‐Ange</au><au>Crouzy, Serge</au><au>Kim, Miyeon</au><au>Becchi, Michel</au><au>Cafiso, David S.</au><au>Pietro, Attilio Di</au><au>Jault, Jean‐Michel</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Probing the conformation of the resting state of a bacterial multidrug ABC transporter, BmrA, by a site‐directed spin labeling approach</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2009-07</date><risdate>2009</risdate><volume>18</volume><issue>7</issue><spage>1507</spage><epage>1520</epage><pages>1507-1520</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Previously published 3‐D structures of a prototypic ATP‐binding cassette (ABC) transporter, MsbA, have been recently corrected revealing large rigid‐body motions possibly linked to its catalytic cycle. Here, a closely related multidrug bacterial ABC transporter, BmrA, was studied using site‐directed spin labeling by focusing on a region connecting the transmembrane domain and the nucleotide‐binding domain (NBD). Electron paramagnetic resonance (EPR) spectra of single spin‐labeled cysteine mutants suggests that, in the resting state, this sub‐domain essentially adopts a partially extended conformation, which is consistent with the crystal structures of MsbA and Sav1866. Interestingly, one of the single point mutants (Q333C) yielded an immobilized EPR spectrum that could arise from a direct interaction with a vicinal tyrosine residue. Inspection of different BmrA models pointed to Y408, within the NBD, as the putative interacting partner, and its mutation to a Phe residue indeed dramatically modified the EPR spectra of the spin labeled Q333C. Moreover, unlike the Y408F mutation, the Y408A mutation abolished both ATPase activity and drug transport of BmrA, suggesting that a nonpolar bulky residue is required at this position. The spatial proximity of Q333 and Y408 was also confirmed by formation of a disulfide bond when both Q333 and T407 (or S409) were replaced jointly by a cysteine residue. Overall, these results indicate that the two regions surrounding Q333 and Y408 are close together in the 3‐D structure of BmrA and that residues within these two sub‐domains are essential for proper functioning of this transporter.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19479721</pmid><doi>10.1002/pro.141</doi><tpages>14</tpages><orcidid>https://orcid.org/0000-0003-1743-2777</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2009-07, Vol.18 (7), p.1507-1520 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2775218 |
source | MEDLINE; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; Wiley Online Library All Journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | ABC transporter Amino Acid Sequence ATP-Binding Cassette Transporters - chemistry ATP-Binding Cassette Transporters - genetics ATP-Binding Cassette Transporters - metabolism Bacteria Biochemistry, Molecular Biology Cysteine - metabolism Drug Resistance, Multiple, Bacterial - genetics electron paramagnetic resonance Electron Spin Resonance Spectroscopy Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism Life Sciences Models, Molecular Molecular Sequence Data multidrug transporter Mutagenesis, Site-Directed - methods Mutation Protein Conformation resting state Sequence Alignment site‐directed spin labeling Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization Spin Labels Structural Biology |
title | Probing the conformation of the resting state of a bacterial multidrug ABC transporter, BmrA, by a site‐directed spin labeling approach |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T00%3A43%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Probing%20the%20conformation%20of%20the%20resting%20state%20of%20a%20bacterial%20multidrug%20ABC%20transporter,%20BmrA,%20by%20a%20site%E2%80%90directed%20spin%20labeling%20approach&rft.jtitle=Protein%20science&rft.au=Do%20Cao,%20Marie%E2%80%90Ange&rft.date=2009-07&rft.volume=18&rft.issue=7&rft.spage=1507&rft.epage=1520&rft.pages=1507-1520&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.141&rft_dat=%3Cproquest_pubme%3E1534812674%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1534812674&rft_id=info:pmid/19479721&rfr_iscdi=true |