Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia

Arteriovenous malformations (AVMs) are vascular anomalies where arteries and veins are directly connected through a complex, tangled web of abnormal arteries and veins instead of a normal capillary network. AVMs in the brain, lung, and visceral organs, including the liver and gastrointestinal tract,...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of clinical investigation 2009-11, Vol.119 (11), p.3487-3496
Hauptverfasser: Park, Sung Ok, Wankhede, Mamta, Lee, Young Jae, Choi, Eun-Jung, Fliess, Naime, Choe, Se-Woon, Oh, Seh-Hoon, Walter, Glenn, Raizada, Mohan K, Sorg, Brian S, Oh, S Paul
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3496
container_issue 11
container_start_page 3487
container_title The Journal of clinical investigation
container_volume 119
creator Park, Sung Ok
Wankhede, Mamta
Lee, Young Jae
Choi, Eun-Jung
Fliess, Naime
Choe, Se-Woon
Oh, Seh-Hoon
Walter, Glenn
Raizada, Mohan K
Sorg, Brian S
Oh, S Paul
description Arteriovenous malformations (AVMs) are vascular anomalies where arteries and veins are directly connected through a complex, tangled web of abnormal arteries and veins instead of a normal capillary network. AVMs in the brain, lung, and visceral organs, including the liver and gastrointestinal tract, result in considerable morbidity and mortality. AVMs are the underlying cause of three major clinical symptoms of a genetic vascular dysplasia termed hereditary hemorrhagic telangiectasia (HHT), which is characterized by recurrent nosebleeds, mucocutaneous telangiectases, and visceral AVMs and caused by mutations in one of several genes, including activin receptor-like kinase 1 (ALK1). It remains unknown why and how selective blood vessels form AVMs, and there have been technical limitations to observing the initial stages of AVM formation. Here we present in vivo evidence that physiological or environmental factors such as wounds in addition to the genetic ablation are required for Alk1-deficient vessels to develop to AVMs in adult mice. Using the dorsal skinfold window chamber system, we have demonstrated for what we believe to be the first time the entire course of AVM formation in subdermal blood vessels by using intravital bright-field images, hyperspectral imaging, fluorescence recordings of direct arterial flow through the AV shunts, and vascular casting techniques. We believe our data provide novel insights into the pathogenetic mechanisms of HHT and potential therapeutic approaches.
doi_str_mv 10.1172/JCI39482
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2769195</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A212277961</galeid><sourcerecordid>A212277961</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-7609ce7cba7a5dbbdc5e3f43eee83bef349361551381ff92ac0cac7e2aadc7403</originalsourceid><addsrcrecordid>eNqNkl1rFDEUhgdR7FoFf4EMCkUvpuZjPm8KZWl1pVCoH7fhbObMbMpM0iaZxf57z7KrdmUvJJCEk-e8yUveJHnN2Snnlfj4Zb6QTV6LJ8mMF0Wd1ULWT5MZY4JnTSXro-RFCLeM8Twv8ufJEW9qVjQ8nyX3NwhDFs2IqRmhN7ZPXZe2mFq3din4iN64NVo3hXSEoXN-hGicTY1NIR2pjDS3OGzaVuixNRH8A21H5_2KFHUacQDbG9QRgoGXybMOhoCvdutx8v3y4tv8c3Z1_WkxP7_KdJmzmFUlazRWegkVFO1y2eoCZZdLRKzlEjuZN7Iks1zWvOsaAZpp0BUKgFZXOZPHydlW925ajthqtNHDoO48-fQPyoFR-yfWrFTv1kpUZcObggROdgLe3U8YohpN0DiQGSTfqixLSa8oCXz7D3jrJm_JnBKMFSU52UDvtlAPAypjO0eX6o2iOhdciKpqSk5UdoDq0SK90FnsDJX3-NMDPI0WR6MPNnzYayAm4s_YwxSCWny9-X_2-sc-e_KIXVGo4iq4YdpkJeyD77eg9i4Ej92fH-FMbcKsfoeZ0DePf_AvuEuv_AWvEu29</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200566096</pqid></control><display><type>article</type><title>Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Park, Sung Ok ; Wankhede, Mamta ; Lee, Young Jae ; Choi, Eun-Jung ; Fliess, Naime ; Choe, Se-Woon ; Oh, Seh-Hoon ; Walter, Glenn ; Raizada, Mohan K ; Sorg, Brian S ; Oh, S Paul</creator><creatorcontrib>Park, Sung Ok ; Wankhede, Mamta ; Lee, Young Jae ; Choi, Eun-Jung ; Fliess, Naime ; Choe, Se-Woon ; Oh, Seh-Hoon ; Walter, Glenn ; Raizada, Mohan K ; Sorg, Brian S ; Oh, S Paul</creatorcontrib><description>Arteriovenous malformations (AVMs) are vascular anomalies where arteries and veins are directly connected through a complex, tangled web of abnormal arteries and veins instead of a normal capillary network. AVMs in the brain, lung, and visceral organs, including the liver and gastrointestinal tract, result in considerable morbidity and mortality. AVMs are the underlying cause of three major clinical symptoms of a genetic vascular dysplasia termed hereditary hemorrhagic telangiectasia (HHT), which is characterized by recurrent nosebleeds, mucocutaneous telangiectases, and visceral AVMs and caused by mutations in one of several genes, including activin receptor-like kinase 1 (ALK1). It remains unknown why and how selective blood vessels form AVMs, and there have been technical limitations to observing the initial stages of AVM formation. Here we present in vivo evidence that physiological or environmental factors such as wounds in addition to the genetic ablation are required for Alk1-deficient vessels to develop to AVMs in adult mice. Using the dorsal skinfold window chamber system, we have demonstrated for what we believe to be the first time the entire course of AVM formation in subdermal blood vessels by using intravital bright-field images, hyperspectral imaging, fluorescence recordings of direct arterial flow through the AV shunts, and vascular casting techniques. We believe our data provide novel insights into the pathogenetic mechanisms of HHT and potential therapeutic approaches.</description><identifier>ISSN: 0021-9738</identifier><identifier>EISSN: 1558-8238</identifier><identifier>DOI: 10.1172/JCI39482</identifier><identifier>PMID: 19805914</identifier><language>eng</language><publisher>United States: American Society for Clinical Investigation</publisher><subject>Activin Receptors, Type I - genetics ; Animals ; Arteriovenous malformations ; Arteriovenous Malformations - diagnosis ; Arteriovenous Malformations - ultrastructure ; Biomedical research ; Blood vessels ; Blood Vessels - embryology ; Blood Vessels - injuries ; Care and treatment ; Diagnostic Imaging - methods ; Disease Models, Animal ; Epistaxis ; Female ; Gene mutations ; Genes ; Genetic aspects ; Health aspects ; Homeostasis ; Kinases ; Male ; Mice ; Mutation ; Physiology ; Risk factors ; Signal transduction ; Technical Advance ; Telangiectasia, Hereditary Hemorrhagic ; Telangiectasia, Hereditary Hemorrhagic - genetics ; Telangiectasia, Hereditary Hemorrhagic - pathology ; Veins &amp; arteries</subject><ispartof>The Journal of clinical investigation, 2009-11, Vol.119 (11), p.3487-3496</ispartof><rights>COPYRIGHT 2009 American Society for Clinical Investigation</rights><rights>Copyright American Society for Clinical Investigation Nov 2009</rights><rights>Copyright © 2009, American Society for Clinical Investigation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-7609ce7cba7a5dbbdc5e3f43eee83bef349361551381ff92ac0cac7e2aadc7403</citedby><cites>FETCH-LOGICAL-c640t-7609ce7cba7a5dbbdc5e3f43eee83bef349361551381ff92ac0cac7e2aadc7403</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2769195/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2769195/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19805914$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Park, Sung Ok</creatorcontrib><creatorcontrib>Wankhede, Mamta</creatorcontrib><creatorcontrib>Lee, Young Jae</creatorcontrib><creatorcontrib>Choi, Eun-Jung</creatorcontrib><creatorcontrib>Fliess, Naime</creatorcontrib><creatorcontrib>Choe, Se-Woon</creatorcontrib><creatorcontrib>Oh, Seh-Hoon</creatorcontrib><creatorcontrib>Walter, Glenn</creatorcontrib><creatorcontrib>Raizada, Mohan K</creatorcontrib><creatorcontrib>Sorg, Brian S</creatorcontrib><creatorcontrib>Oh, S Paul</creatorcontrib><title>Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia</title><title>The Journal of clinical investigation</title><addtitle>J Clin Invest</addtitle><description>Arteriovenous malformations (AVMs) are vascular anomalies where arteries and veins are directly connected through a complex, tangled web of abnormal arteries and veins instead of a normal capillary network. AVMs in the brain, lung, and visceral organs, including the liver and gastrointestinal tract, result in considerable morbidity and mortality. AVMs are the underlying cause of three major clinical symptoms of a genetic vascular dysplasia termed hereditary hemorrhagic telangiectasia (HHT), which is characterized by recurrent nosebleeds, mucocutaneous telangiectases, and visceral AVMs and caused by mutations in one of several genes, including activin receptor-like kinase 1 (ALK1). It remains unknown why and how selective blood vessels form AVMs, and there have been technical limitations to observing the initial stages of AVM formation. Here we present in vivo evidence that physiological or environmental factors such as wounds in addition to the genetic ablation are required for Alk1-deficient vessels to develop to AVMs in adult mice. Using the dorsal skinfold window chamber system, we have demonstrated for what we believe to be the first time the entire course of AVM formation in subdermal blood vessels by using intravital bright-field images, hyperspectral imaging, fluorescence recordings of direct arterial flow through the AV shunts, and vascular casting techniques. We believe our data provide novel insights into the pathogenetic mechanisms of HHT and potential therapeutic approaches.</description><subject>Activin Receptors, Type I - genetics</subject><subject>Animals</subject><subject>Arteriovenous malformations</subject><subject>Arteriovenous Malformations - diagnosis</subject><subject>Arteriovenous Malformations - ultrastructure</subject><subject>Biomedical research</subject><subject>Blood vessels</subject><subject>Blood Vessels - embryology</subject><subject>Blood Vessels - injuries</subject><subject>Care and treatment</subject><subject>Diagnostic Imaging - methods</subject><subject>Disease Models, Animal</subject><subject>Epistaxis</subject><subject>Female</subject><subject>Gene mutations</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Health aspects</subject><subject>Homeostasis</subject><subject>Kinases</subject><subject>Male</subject><subject>Mice</subject><subject>Mutation</subject><subject>Physiology</subject><subject>Risk factors</subject><subject>Signal transduction</subject><subject>Technical Advance</subject><subject>Telangiectasia, Hereditary Hemorrhagic</subject><subject>Telangiectasia, Hereditary Hemorrhagic - genetics</subject><subject>Telangiectasia, Hereditary Hemorrhagic - pathology</subject><subject>Veins &amp; arteries</subject><issn>0021-9738</issn><issn>1558-8238</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BEC</sourceid><sourceid>BENPR</sourceid><recordid>eNqNkl1rFDEUhgdR7FoFf4EMCkUvpuZjPm8KZWl1pVCoH7fhbObMbMpM0iaZxf57z7KrdmUvJJCEk-e8yUveJHnN2Snnlfj4Zb6QTV6LJ8mMF0Wd1ULWT5MZY4JnTSXro-RFCLeM8Twv8ufJEW9qVjQ8nyX3NwhDFs2IqRmhN7ZPXZe2mFq3din4iN64NVo3hXSEoXN-hGicTY1NIR2pjDS3OGzaVuixNRH8A21H5_2KFHUacQDbG9QRgoGXybMOhoCvdutx8v3y4tv8c3Z1_WkxP7_KdJmzmFUlazRWegkVFO1y2eoCZZdLRKzlEjuZN7Iks1zWvOsaAZpp0BUKgFZXOZPHydlW925ajthqtNHDoO48-fQPyoFR-yfWrFTv1kpUZcObggROdgLe3U8YohpN0DiQGSTfqixLSa8oCXz7D3jrJm_JnBKMFSU52UDvtlAPAypjO0eX6o2iOhdciKpqSk5UdoDq0SK90FnsDJX3-NMDPI0WR6MPNnzYayAm4s_YwxSCWny9-X_2-sc-e_KIXVGo4iq4YdpkJeyD77eg9i4Ej92fH-FMbcKsfoeZ0DePf_AvuEuv_AWvEu29</recordid><startdate>20091101</startdate><enddate>20091101</enddate><creator>Park, Sung Ok</creator><creator>Wankhede, Mamta</creator><creator>Lee, Young Jae</creator><creator>Choi, Eun-Jung</creator><creator>Fliess, Naime</creator><creator>Choe, Se-Woon</creator><creator>Oh, Seh-Hoon</creator><creator>Walter, Glenn</creator><creator>Raizada, Mohan K</creator><creator>Sorg, Brian S</creator><creator>Oh, S Paul</creator><general>American Society for Clinical Investigation</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>IOV</scope><scope>ISR</scope><scope>3V.</scope><scope>7RV</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091101</creationdate><title>Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia</title><author>Park, Sung Ok ; Wankhede, Mamta ; Lee, Young Jae ; Choi, Eun-Jung ; Fliess, Naime ; Choe, Se-Woon ; Oh, Seh-Hoon ; Walter, Glenn ; Raizada, Mohan K ; Sorg, Brian S ; Oh, S Paul</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-7609ce7cba7a5dbbdc5e3f43eee83bef349361551381ff92ac0cac7e2aadc7403</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Activin Receptors, Type I - genetics</topic><topic>Animals</topic><topic>Arteriovenous malformations</topic><topic>Arteriovenous Malformations - diagnosis</topic><topic>Arteriovenous Malformations - ultrastructure</topic><topic>Biomedical research</topic><topic>Blood vessels</topic><topic>Blood Vessels - embryology</topic><topic>Blood Vessels - injuries</topic><topic>Care and treatment</topic><topic>Diagnostic Imaging - methods</topic><topic>Disease Models, Animal</topic><topic>Epistaxis</topic><topic>Female</topic><topic>Gene mutations</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Health aspects</topic><topic>Homeostasis</topic><topic>Kinases</topic><topic>Male</topic><topic>Mice</topic><topic>Mutation</topic><topic>Physiology</topic><topic>Risk factors</topic><topic>Signal transduction</topic><topic>Technical Advance</topic><topic>Telangiectasia, Hereditary Hemorrhagic</topic><topic>Telangiectasia, Hereditary Hemorrhagic - genetics</topic><topic>Telangiectasia, Hereditary Hemorrhagic - pathology</topic><topic>Veins &amp; arteries</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Park, Sung Ok</creatorcontrib><creatorcontrib>Wankhede, Mamta</creatorcontrib><creatorcontrib>Lee, Young Jae</creatorcontrib><creatorcontrib>Choi, Eun-Jung</creatorcontrib><creatorcontrib>Fliess, Naime</creatorcontrib><creatorcontrib>Choe, Se-Woon</creatorcontrib><creatorcontrib>Oh, Seh-Hoon</creatorcontrib><creatorcontrib>Walter, Glenn</creatorcontrib><creatorcontrib>Raizada, Mohan K</creatorcontrib><creatorcontrib>Sorg, Brian S</creatorcontrib><creatorcontrib>Oh, S Paul</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Opposing Viewpoints</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>eLibrary</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of clinical investigation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Park, Sung Ok</au><au>Wankhede, Mamta</au><au>Lee, Young Jae</au><au>Choi, Eun-Jung</au><au>Fliess, Naime</au><au>Choe, Se-Woon</au><au>Oh, Seh-Hoon</au><au>Walter, Glenn</au><au>Raizada, Mohan K</au><au>Sorg, Brian S</au><au>Oh, S Paul</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia</atitle><jtitle>The Journal of clinical investigation</jtitle><addtitle>J Clin Invest</addtitle><date>2009-11-01</date><risdate>2009</risdate><volume>119</volume><issue>11</issue><spage>3487</spage><epage>3496</epage><pages>3487-3496</pages><issn>0021-9738</issn><eissn>1558-8238</eissn><abstract>Arteriovenous malformations (AVMs) are vascular anomalies where arteries and veins are directly connected through a complex, tangled web of abnormal arteries and veins instead of a normal capillary network. AVMs in the brain, lung, and visceral organs, including the liver and gastrointestinal tract, result in considerable morbidity and mortality. AVMs are the underlying cause of three major clinical symptoms of a genetic vascular dysplasia termed hereditary hemorrhagic telangiectasia (HHT), which is characterized by recurrent nosebleeds, mucocutaneous telangiectases, and visceral AVMs and caused by mutations in one of several genes, including activin receptor-like kinase 1 (ALK1). It remains unknown why and how selective blood vessels form AVMs, and there have been technical limitations to observing the initial stages of AVM formation. Here we present in vivo evidence that physiological or environmental factors such as wounds in addition to the genetic ablation are required for Alk1-deficient vessels to develop to AVMs in adult mice. Using the dorsal skinfold window chamber system, we have demonstrated for what we believe to be the first time the entire course of AVM formation in subdermal blood vessels by using intravital bright-field images, hyperspectral imaging, fluorescence recordings of direct arterial flow through the AV shunts, and vascular casting techniques. We believe our data provide novel insights into the pathogenetic mechanisms of HHT and potential therapeutic approaches.</abstract><cop>United States</cop><pub>American Society for Clinical Investigation</pub><pmid>19805914</pmid><doi>10.1172/JCI39482</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9738
ispartof The Journal of clinical investigation, 2009-11, Vol.119 (11), p.3487-3496
issn 0021-9738
1558-8238
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2769195
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Activin Receptors, Type I - genetics
Animals
Arteriovenous malformations
Arteriovenous Malformations - diagnosis
Arteriovenous Malformations - ultrastructure
Biomedical research
Blood vessels
Blood Vessels - embryology
Blood Vessels - injuries
Care and treatment
Diagnostic Imaging - methods
Disease Models, Animal
Epistaxis
Female
Gene mutations
Genes
Genetic aspects
Health aspects
Homeostasis
Kinases
Male
Mice
Mutation
Physiology
Risk factors
Signal transduction
Technical Advance
Telangiectasia, Hereditary Hemorrhagic
Telangiectasia, Hereditary Hemorrhagic - genetics
Telangiectasia, Hereditary Hemorrhagic - pathology
Veins & arteries
title Real-time imaging of de novo arteriovenous malformation in a mouse model of hereditary hemorrhagic telangiectasia
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T13%3A05%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Real-time%20imaging%20of%20de%20novo%20arteriovenous%20malformation%20in%20a%20mouse%20model%20of%20hereditary%20hemorrhagic%20telangiectasia&rft.jtitle=The%20Journal%20of%20clinical%20investigation&rft.au=Park,%20Sung%20Ok&rft.date=2009-11-01&rft.volume=119&rft.issue=11&rft.spage=3487&rft.epage=3496&rft.pages=3487-3496&rft.issn=0021-9738&rft.eissn=1558-8238&rft_id=info:doi/10.1172/JCI39482&rft_dat=%3Cgale_pubme%3EA212277961%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200566096&rft_id=info:pmid/19805914&rft_galeid=A212277961&rfr_iscdi=true