Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows

Much of modern biology relies on the strategic manipulation of molecules for creating ordered arrays prior to high throughput molecular analysis. Normally, DNA arrays involve deposition on surfaces, or confinement in nanochannels; however, we show that microfluidic devices can present stretched mole...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Lab on a chip 2009-01, Vol.9 (16), p.2348-2355
Hauptverfasser: Jo, Kyubong, Chen, Yeng-Long, de Pablo, Juan J, Schwartz, David C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 2355
container_issue 16
container_start_page 2348
container_title Lab on a chip
container_volume 9
creator Jo, Kyubong
Chen, Yeng-Long
de Pablo, Juan J
Schwartz, David C
description Much of modern biology relies on the strategic manipulation of molecules for creating ordered arrays prior to high throughput molecular analysis. Normally, DNA arrays involve deposition on surfaces, or confinement in nanochannels; however, we show that microfluidic devices can present stretched molecules within a controlled flow in ways complementing surface modalities, or extreme confinement conditions. Here we utilize pressure-driven oscillatory shear flows generated in microchannels as a new way of stretching DNA molecules for imaging "arrays" of individual DNA molecules. Fluid shear effects both stretch DNA molecules and cause them to migrate away from the walls becoming focused in the centerline of a channel. We show experimental findings confirming simulations using Brownian dynamics accounting for hydrodynamic interactions between molecules and channel-flow boundary conditions. Our findings characterize DNA elongation and migration phenomena as a function of molecular size, shear rate, oscillatory frequency with comparisons to computer simulation studies.
doi_str_mv 10.1039/b902292a
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2768593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67530761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-5afb2255821443cdfa56fab4da48df9af4af1e4610ef96a2050aac843e38f3b03</originalsourceid><addsrcrecordid>eNqFkU1rGzEQhkVpaZwP6C8oOpVc3OprtatLwKRJGjDJJTmLWa1kq2glR9ptyL_PBrtuc_JpZpiHl3nnRegLJd8p4epHqwhjisEHNKOi5nNCG_Vx36v6CB2X8psQWgnZfEZHVEkuhZQzpK9CiisYfIoYYod7v8rbKTlcfFwFi3_eLXCfgjVjsAX7OEEmJ7OGGG0oeHzDcCrGhwBDyi-4rC1k7EJ6Lqfok4NQ7NmunqDH66uHy1_z5f3N7eViOTdCNcO8AtcyVlUNo0Jw0zmopINWdCCazilwAhy1QlJinZLASEUATCO45Y3jLeEn6GKruxnb3nbGxiFD0Jvse8gvOoHX7zfRr_Uq_dGslk2l-CTwbSeQ09Noy6B7X4ydLEWbxqJlXXFSS3oQ5JMhwYk6CDJKpaBSTuD5Fpy-Wkq2bn82JfotX_033wn9-r_Nf-AuUP4KATmipQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21164166</pqid></control><display><type>article</type><title>Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Jo, Kyubong ; Chen, Yeng-Long ; de Pablo, Juan J ; Schwartz, David C</creator><creatorcontrib>Jo, Kyubong ; Chen, Yeng-Long ; de Pablo, Juan J ; Schwartz, David C</creatorcontrib><description>Much of modern biology relies on the strategic manipulation of molecules for creating ordered arrays prior to high throughput molecular analysis. Normally, DNA arrays involve deposition on surfaces, or confinement in nanochannels; however, we show that microfluidic devices can present stretched molecules within a controlled flow in ways complementing surface modalities, or extreme confinement conditions. Here we utilize pressure-driven oscillatory shear flows generated in microchannels as a new way of stretching DNA molecules for imaging "arrays" of individual DNA molecules. Fluid shear effects both stretch DNA molecules and cause them to migrate away from the walls becoming focused in the centerline of a channel. We show experimental findings confirming simulations using Brownian dynamics accounting for hydrodynamic interactions between molecules and channel-flow boundary conditions. Our findings characterize DNA elongation and migration phenomena as a function of molecular size, shear rate, oscillatory frequency with comparisons to computer simulation studies.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/b902292a</identifier><identifier>PMID: 19636466</identifier><language>eng</language><publisher>England</publisher><subject>Biomechanical Phenomena ; DNA - analysis ; DNA - chemistry ; Microfluidic Analytical Techniques ; Microscopy, Fluorescence ; Molecular Weight ; Motion</subject><ispartof>Lab on a chip, 2009-01, Vol.9 (16), p.2348-2355</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-5afb2255821443cdfa56fab4da48df9af4af1e4610ef96a2050aac843e38f3b03</citedby><cites>FETCH-LOGICAL-c498t-5afb2255821443cdfa56fab4da48df9af4af1e4610ef96a2050aac843e38f3b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19636466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jo, Kyubong</creatorcontrib><creatorcontrib>Chen, Yeng-Long</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Schwartz, David C</creatorcontrib><title>Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Much of modern biology relies on the strategic manipulation of molecules for creating ordered arrays prior to high throughput molecular analysis. Normally, DNA arrays involve deposition on surfaces, or confinement in nanochannels; however, we show that microfluidic devices can present stretched molecules within a controlled flow in ways complementing surface modalities, or extreme confinement conditions. Here we utilize pressure-driven oscillatory shear flows generated in microchannels as a new way of stretching DNA molecules for imaging "arrays" of individual DNA molecules. Fluid shear effects both stretch DNA molecules and cause them to migrate away from the walls becoming focused in the centerline of a channel. We show experimental findings confirming simulations using Brownian dynamics accounting for hydrodynamic interactions between molecules and channel-flow boundary conditions. Our findings characterize DNA elongation and migration phenomena as a function of molecular size, shear rate, oscillatory frequency with comparisons to computer simulation studies.</description><subject>Biomechanical Phenomena</subject><subject>DNA - analysis</subject><subject>DNA - chemistry</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular Weight</subject><subject>Motion</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1rGzEQhkVpaZwP6C8oOpVc3OprtatLwKRJGjDJJTmLWa1kq2glR9ptyL_PBrtuc_JpZpiHl3nnRegLJd8p4epHqwhjisEHNKOi5nNCG_Vx36v6CB2X8psQWgnZfEZHVEkuhZQzpK9CiisYfIoYYod7v8rbKTlcfFwFi3_eLXCfgjVjsAX7OEEmJ7OGGG0oeHzDcCrGhwBDyi-4rC1k7EJ6Lqfok4NQ7NmunqDH66uHy1_z5f3N7eViOTdCNcO8AtcyVlUNo0Jw0zmopINWdCCazilwAhy1QlJinZLASEUATCO45Y3jLeEn6GKruxnb3nbGxiFD0Jvse8gvOoHX7zfRr_Uq_dGslk2l-CTwbSeQ09Noy6B7X4ydLEWbxqJlXXFSS3oQ5JMhwYk6CDJKpaBSTuD5Fpy-Wkq2bn82JfotX_033wn9-r_Nf-AuUP4KATmipQ</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Jo, Kyubong</creator><creator>Chen, Yeng-Long</creator><creator>de Pablo, Juan J</creator><creator>Schwartz, David C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090101</creationdate><title>Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows</title><author>Jo, Kyubong ; Chen, Yeng-Long ; de Pablo, Juan J ; Schwartz, David C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-5afb2255821443cdfa56fab4da48df9af4af1e4610ef96a2050aac843e38f3b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biomechanical Phenomena</topic><topic>DNA - analysis</topic><topic>DNA - chemistry</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular Weight</topic><topic>Motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Kyubong</creatorcontrib><creatorcontrib>Chen, Yeng-Long</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Schwartz, David C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Kyubong</au><au>Chen, Yeng-Long</au><au>de Pablo, Juan J</au><au>Schwartz, David C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>9</volume><issue>16</issue><spage>2348</spage><epage>2355</epage><pages>2348-2355</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Much of modern biology relies on the strategic manipulation of molecules for creating ordered arrays prior to high throughput molecular analysis. Normally, DNA arrays involve deposition on surfaces, or confinement in nanochannels; however, we show that microfluidic devices can present stretched molecules within a controlled flow in ways complementing surface modalities, or extreme confinement conditions. Here we utilize pressure-driven oscillatory shear flows generated in microchannels as a new way of stretching DNA molecules for imaging "arrays" of individual DNA molecules. Fluid shear effects both stretch DNA molecules and cause them to migrate away from the walls becoming focused in the centerline of a channel. We show experimental findings confirming simulations using Brownian dynamics accounting for hydrodynamic interactions between molecules and channel-flow boundary conditions. Our findings characterize DNA elongation and migration phenomena as a function of molecular size, shear rate, oscillatory frequency with comparisons to computer simulation studies.</abstract><cop>England</cop><pmid>19636466</pmid><doi>10.1039/b902292a</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1473-0197
ispartof Lab on a chip, 2009-01, Vol.9 (16), p.2348-2355
issn 1473-0197
1473-0189
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2768593
source MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection
subjects Biomechanical Phenomena
DNA - analysis
DNA - chemistry
Microfluidic Analytical Techniques
Microscopy, Fluorescence
Molecular Weight
Motion
title Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elongation%20and%20migration%20of%20single%20DNA%20molecules%20in%20microchannels%20using%20oscillatory%20shear%20flows&rft.jtitle=Lab%20on%20a%20chip&rft.au=Jo,%20Kyubong&rft.date=2009-01-01&rft.volume=9&rft.issue=16&rft.spage=2348&rft.epage=2355&rft.pages=2348-2355&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/b902292a&rft_dat=%3Cproquest_pubme%3E67530761%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21164166&rft_id=info:pmid/19636466&rfr_iscdi=true