Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows
Much of modern biology relies on the strategic manipulation of molecules for creating ordered arrays prior to high throughput molecular analysis. Normally, DNA arrays involve deposition on surfaces, or confinement in nanochannels; however, we show that microfluidic devices can present stretched mole...
Gespeichert in:
Veröffentlicht in: | Lab on a chip 2009-01, Vol.9 (16), p.2348-2355 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2355 |
---|---|
container_issue | 16 |
container_start_page | 2348 |
container_title | Lab on a chip |
container_volume | 9 |
creator | Jo, Kyubong Chen, Yeng-Long de Pablo, Juan J Schwartz, David C |
description | Much of modern biology relies on the strategic manipulation of molecules for creating ordered arrays prior to high throughput molecular analysis. Normally, DNA arrays involve deposition on surfaces, or confinement in nanochannels; however, we show that microfluidic devices can present stretched molecules within a controlled flow in ways complementing surface modalities, or extreme confinement conditions. Here we utilize pressure-driven oscillatory shear flows generated in microchannels as a new way of stretching DNA molecules for imaging "arrays" of individual DNA molecules. Fluid shear effects both stretch DNA molecules and cause them to migrate away from the walls becoming focused in the centerline of a channel. We show experimental findings confirming simulations using Brownian dynamics accounting for hydrodynamic interactions between molecules and channel-flow boundary conditions. Our findings characterize DNA elongation and migration phenomena as a function of molecular size, shear rate, oscillatory frequency with comparisons to computer simulation studies. |
doi_str_mv | 10.1039/b902292a |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2768593</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67530761</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-5afb2255821443cdfa56fab4da48df9af4af1e4610ef96a2050aac843e38f3b03</originalsourceid><addsrcrecordid>eNqFkU1rGzEQhkVpaZwP6C8oOpVc3OprtatLwKRJGjDJJTmLWa1kq2glR9ptyL_PBrtuc_JpZpiHl3nnRegLJd8p4epHqwhjisEHNKOi5nNCG_Vx36v6CB2X8psQWgnZfEZHVEkuhZQzpK9CiisYfIoYYod7v8rbKTlcfFwFi3_eLXCfgjVjsAX7OEEmJ7OGGG0oeHzDcCrGhwBDyi-4rC1k7EJ6Lqfok4NQ7NmunqDH66uHy1_z5f3N7eViOTdCNcO8AtcyVlUNo0Jw0zmopINWdCCazilwAhy1QlJinZLASEUATCO45Y3jLeEn6GKruxnb3nbGxiFD0Jvse8gvOoHX7zfRr_Uq_dGslk2l-CTwbSeQ09Noy6B7X4ydLEWbxqJlXXFSS3oQ5JMhwYk6CDJKpaBSTuD5Fpy-Wkq2bn82JfotX_033wn9-r_Nf-AuUP4KATmipQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21164166</pqid></control><display><type>article</type><title>Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows</title><source>MEDLINE</source><source>Royal Society Of Chemistry Journals</source><source>Alma/SFX Local Collection</source><creator>Jo, Kyubong ; Chen, Yeng-Long ; de Pablo, Juan J ; Schwartz, David C</creator><creatorcontrib>Jo, Kyubong ; Chen, Yeng-Long ; de Pablo, Juan J ; Schwartz, David C</creatorcontrib><description>Much of modern biology relies on the strategic manipulation of molecules for creating ordered arrays prior to high throughput molecular analysis. Normally, DNA arrays involve deposition on surfaces, or confinement in nanochannels; however, we show that microfluidic devices can present stretched molecules within a controlled flow in ways complementing surface modalities, or extreme confinement conditions. Here we utilize pressure-driven oscillatory shear flows generated in microchannels as a new way of stretching DNA molecules for imaging "arrays" of individual DNA molecules. Fluid shear effects both stretch DNA molecules and cause them to migrate away from the walls becoming focused in the centerline of a channel. We show experimental findings confirming simulations using Brownian dynamics accounting for hydrodynamic interactions between molecules and channel-flow boundary conditions. Our findings characterize DNA elongation and migration phenomena as a function of molecular size, shear rate, oscillatory frequency with comparisons to computer simulation studies.</description><identifier>ISSN: 1473-0197</identifier><identifier>EISSN: 1473-0189</identifier><identifier>DOI: 10.1039/b902292a</identifier><identifier>PMID: 19636466</identifier><language>eng</language><publisher>England</publisher><subject>Biomechanical Phenomena ; DNA - analysis ; DNA - chemistry ; Microfluidic Analytical Techniques ; Microscopy, Fluorescence ; Molecular Weight ; Motion</subject><ispartof>Lab on a chip, 2009-01, Vol.9 (16), p.2348-2355</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-5afb2255821443cdfa56fab4da48df9af4af1e4610ef96a2050aac843e38f3b03</citedby><cites>FETCH-LOGICAL-c498t-5afb2255821443cdfa56fab4da48df9af4af1e4610ef96a2050aac843e38f3b03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19636466$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jo, Kyubong</creatorcontrib><creatorcontrib>Chen, Yeng-Long</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Schwartz, David C</creatorcontrib><title>Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows</title><title>Lab on a chip</title><addtitle>Lab Chip</addtitle><description>Much of modern biology relies on the strategic manipulation of molecules for creating ordered arrays prior to high throughput molecular analysis. Normally, DNA arrays involve deposition on surfaces, or confinement in nanochannels; however, we show that microfluidic devices can present stretched molecules within a controlled flow in ways complementing surface modalities, or extreme confinement conditions. Here we utilize pressure-driven oscillatory shear flows generated in microchannels as a new way of stretching DNA molecules for imaging "arrays" of individual DNA molecules. Fluid shear effects both stretch DNA molecules and cause them to migrate away from the walls becoming focused in the centerline of a channel. We show experimental findings confirming simulations using Brownian dynamics accounting for hydrodynamic interactions between molecules and channel-flow boundary conditions. Our findings characterize DNA elongation and migration phenomena as a function of molecular size, shear rate, oscillatory frequency with comparisons to computer simulation studies.</description><subject>Biomechanical Phenomena</subject><subject>DNA - analysis</subject><subject>DNA - chemistry</subject><subject>Microfluidic Analytical Techniques</subject><subject>Microscopy, Fluorescence</subject><subject>Molecular Weight</subject><subject>Motion</subject><issn>1473-0197</issn><issn>1473-0189</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkU1rGzEQhkVpaZwP6C8oOpVc3OprtatLwKRJGjDJJTmLWa1kq2glR9ptyL_PBrtuc_JpZpiHl3nnRegLJd8p4epHqwhjisEHNKOi5nNCG_Vx36v6CB2X8psQWgnZfEZHVEkuhZQzpK9CiisYfIoYYod7v8rbKTlcfFwFi3_eLXCfgjVjsAX7OEEmJ7OGGG0oeHzDcCrGhwBDyi-4rC1k7EJ6Lqfok4NQ7NmunqDH66uHy1_z5f3N7eViOTdCNcO8AtcyVlUNo0Jw0zmopINWdCCazilwAhy1QlJinZLASEUATCO45Y3jLeEn6GKruxnb3nbGxiFD0Jvse8gvOoHX7zfRr_Uq_dGslk2l-CTwbSeQ09Noy6B7X4ydLEWbxqJlXXFSS3oQ5JMhwYk6CDJKpaBSTuD5Fpy-Wkq2bn82JfotX_033wn9-r_Nf-AuUP4KATmipQ</recordid><startdate>20090101</startdate><enddate>20090101</enddate><creator>Jo, Kyubong</creator><creator>Chen, Yeng-Long</creator><creator>de Pablo, Juan J</creator><creator>Schwartz, David C</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090101</creationdate><title>Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows</title><author>Jo, Kyubong ; Chen, Yeng-Long ; de Pablo, Juan J ; Schwartz, David C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-5afb2255821443cdfa56fab4da48df9af4af1e4610ef96a2050aac843e38f3b03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Biomechanical Phenomena</topic><topic>DNA - analysis</topic><topic>DNA - chemistry</topic><topic>Microfluidic Analytical Techniques</topic><topic>Microscopy, Fluorescence</topic><topic>Molecular Weight</topic><topic>Motion</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jo, Kyubong</creatorcontrib><creatorcontrib>Chen, Yeng-Long</creatorcontrib><creatorcontrib>de Pablo, Juan J</creatorcontrib><creatorcontrib>Schwartz, David C</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Lab on a chip</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jo, Kyubong</au><au>Chen, Yeng-Long</au><au>de Pablo, Juan J</au><au>Schwartz, David C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows</atitle><jtitle>Lab on a chip</jtitle><addtitle>Lab Chip</addtitle><date>2009-01-01</date><risdate>2009</risdate><volume>9</volume><issue>16</issue><spage>2348</spage><epage>2355</epage><pages>2348-2355</pages><issn>1473-0197</issn><eissn>1473-0189</eissn><abstract>Much of modern biology relies on the strategic manipulation of molecules for creating ordered arrays prior to high throughput molecular analysis. Normally, DNA arrays involve deposition on surfaces, or confinement in nanochannels; however, we show that microfluidic devices can present stretched molecules within a controlled flow in ways complementing surface modalities, or extreme confinement conditions. Here we utilize pressure-driven oscillatory shear flows generated in microchannels as a new way of stretching DNA molecules for imaging "arrays" of individual DNA molecules. Fluid shear effects both stretch DNA molecules and cause them to migrate away from the walls becoming focused in the centerline of a channel. We show experimental findings confirming simulations using Brownian dynamics accounting for hydrodynamic interactions between molecules and channel-flow boundary conditions. Our findings characterize DNA elongation and migration phenomena as a function of molecular size, shear rate, oscillatory frequency with comparisons to computer simulation studies.</abstract><cop>England</cop><pmid>19636466</pmid><doi>10.1039/b902292a</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1473-0197 |
ispartof | Lab on a chip, 2009-01, Vol.9 (16), p.2348-2355 |
issn | 1473-0197 1473-0189 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2768593 |
source | MEDLINE; Royal Society Of Chemistry Journals; Alma/SFX Local Collection |
subjects | Biomechanical Phenomena DNA - analysis DNA - chemistry Microfluidic Analytical Techniques Microscopy, Fluorescence Molecular Weight Motion |
title | Elongation and migration of single DNA molecules in microchannels using oscillatory shear flows |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T00%3A24%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Elongation%20and%20migration%20of%20single%20DNA%20molecules%20in%20microchannels%20using%20oscillatory%20shear%20flows&rft.jtitle=Lab%20on%20a%20chip&rft.au=Jo,%20Kyubong&rft.date=2009-01-01&rft.volume=9&rft.issue=16&rft.spage=2348&rft.epage=2355&rft.pages=2348-2355&rft.issn=1473-0197&rft.eissn=1473-0189&rft_id=info:doi/10.1039/b902292a&rft_dat=%3Cproquest_pubme%3E67530761%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21164166&rft_id=info:pmid/19636466&rfr_iscdi=true |