Physical Binding Pocket Induction for Affinity Prediction

Computational methods for predicting ligand affinity where no protein structure is known generally take the form of regression analysis based on molecular features that have only a tangential relationship to a protein/ligand binding event. Such methods have limited utility when structural variation...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2009-10, Vol.52 (19), p.6107-6125
Hauptverfasser: Langham, James J, Cleves, Ann E, Spitzer, Russell, Kirshner, Daniel, Jain, Ajay N
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 6125
container_issue 19
container_start_page 6107
container_title Journal of medicinal chemistry
container_volume 52
creator Langham, James J
Cleves, Ann E
Spitzer, Russell
Kirshner, Daniel
Jain, Ajay N
description Computational methods for predicting ligand affinity where no protein structure is known generally take the form of regression analysis based on molecular features that have only a tangential relationship to a protein/ligand binding event. Such methods have limited utility when structural variation moves beyond congeneric series. We present a novel approach based on the multiple-instance learning method of Compass, where a physical model of a binding site is induced from ligands and their corresponding activity data. The model consists of molecular fragments that can account for multiple positions of literal protein residues. We demonstrate the method on 5HT1a ligands by training on a series with limited scaffold variation and testing on numerous ligands with variant scaffolds. Predictive error was between 0.5 and 1.0 log units (0.7−1.4 kcal/mol), with statistically significant rank correlations. Accurate activity predictions of novel ligands were demonstrated using a validation approach where a small number of ligands of limited structural variation known at a fixed time point were used to make predictions on a blind test set of widely varying molecules, some discovered at a much later time point.
doi_str_mv 10.1021/jm901096y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2766559</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67673339</sourcerecordid><originalsourceid>FETCH-LOGICAL-a433t-bf875b0eb6c9b3cfbb5ca7d559e3612e7a5fefe1d40c72743ada6147a39e832b3</originalsourceid><addsrcrecordid>eNptkE1LAzEURYMotlYX_gGZjYKL0XxN0tkItfhRKNiFrkMmk7Sp06QmM8L8e6e2VAVXD9473Ps4AJwjeIMgRrfLVQ4RzFl7APoowzClQ0gPQR9CjFPMMOmBkxiXEEKCMDkGPZTzjGKI-iCfLdpolaySe-tK6-bJzKt3XScTVzaqtt4lxodkZIx1tm6TWdCl_d6fgiMjq6jPdnMA3h4fXsfP6fTlaTIeTVNJCanTwgx5VkBdMJUXRJmiyJTkZZblmjCENZeZ0UajkkLFMadElpIhyiXJ9ZDgggzA3TZ33RQrXSrt6iArsQ52JUMrvLTi78XZhZj7T4E5Y11NF3C1Cwj-o9GxFisbla4q6bRvomCccULIBrzegir4GIM2-xIExUa02Ivu2IvfX_2QO7MdcLkDZOz0miCdsnHPYQzZkFL6w0kVxdI3wXUy_yn8AqGaku4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67673339</pqid></control><display><type>article</type><title>Physical Binding Pocket Induction for Affinity Prediction</title><source>MEDLINE</source><source>ACS Publications</source><creator>Langham, James J ; Cleves, Ann E ; Spitzer, Russell ; Kirshner, Daniel ; Jain, Ajay N</creator><creatorcontrib>Langham, James J ; Cleves, Ann E ; Spitzer, Russell ; Kirshner, Daniel ; Jain, Ajay N</creatorcontrib><description>Computational methods for predicting ligand affinity where no protein structure is known generally take the form of regression analysis based on molecular features that have only a tangential relationship to a protein/ligand binding event. Such methods have limited utility when structural variation moves beyond congeneric series. We present a novel approach based on the multiple-instance learning method of Compass, where a physical model of a binding site is induced from ligands and their corresponding activity data. The model consists of molecular fragments that can account for multiple positions of literal protein residues. We demonstrate the method on 5HT1a ligands by training on a series with limited scaffold variation and testing on numerous ligands with variant scaffolds. Predictive error was between 0.5 and 1.0 log units (0.7−1.4 kcal/mol), with statistically significant rank correlations. Accurate activity predictions of novel ligands were demonstrated using a validation approach where a small number of ligands of limited structural variation known at a fixed time point were used to make predictions on a blind test set of widely varying molecules, some discovered at a much later time point.</description><identifier>ISSN: 0022-2623</identifier><identifier>EISSN: 1520-4804</identifier><identifier>DOI: 10.1021/jm901096y</identifier><identifier>PMID: 19754201</identifier><identifier>CODEN: JMCMAR</identifier><language>eng</language><publisher>Columbus, OH: American Chemical Society</publisher><subject>Binding Sites ; Biological and medical sciences ; General pharmacology ; Ligands ; Medical sciences ; Models, Molecular ; Neural Networks (Computer) ; Peptide Fragments ; Pharmacology. Drug treatments ; Physicochemical properties. Structure-activity relationships ; Protein Binding ; Receptor, Serotonin, 5-HT1A - metabolism</subject><ispartof>Journal of medicinal chemistry, 2009-10, Vol.52 (19), p.6107-6125</ispartof><rights>Copyright © 2009 American Chemical Society</rights><rights>2015 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a433t-bf875b0eb6c9b3cfbb5ca7d559e3612e7a5fefe1d40c72743ada6147a39e832b3</citedby><cites>FETCH-LOGICAL-a433t-bf875b0eb6c9b3cfbb5ca7d559e3612e7a5fefe1d40c72743ada6147a39e832b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/jm901096y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/jm901096y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2763,27075,27923,27924,56737,56787</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=22068444$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19754201$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Langham, James J</creatorcontrib><creatorcontrib>Cleves, Ann E</creatorcontrib><creatorcontrib>Spitzer, Russell</creatorcontrib><creatorcontrib>Kirshner, Daniel</creatorcontrib><creatorcontrib>Jain, Ajay N</creatorcontrib><title>Physical Binding Pocket Induction for Affinity Prediction</title><title>Journal of medicinal chemistry</title><addtitle>J. Med. Chem</addtitle><description>Computational methods for predicting ligand affinity where no protein structure is known generally take the form of regression analysis based on molecular features that have only a tangential relationship to a protein/ligand binding event. Such methods have limited utility when structural variation moves beyond congeneric series. We present a novel approach based on the multiple-instance learning method of Compass, where a physical model of a binding site is induced from ligands and their corresponding activity data. The model consists of molecular fragments that can account for multiple positions of literal protein residues. We demonstrate the method on 5HT1a ligands by training on a series with limited scaffold variation and testing on numerous ligands with variant scaffolds. Predictive error was between 0.5 and 1.0 log units (0.7−1.4 kcal/mol), with statistically significant rank correlations. Accurate activity predictions of novel ligands were demonstrated using a validation approach where a small number of ligands of limited structural variation known at a fixed time point were used to make predictions on a blind test set of widely varying molecules, some discovered at a much later time point.</description><subject>Binding Sites</subject><subject>Biological and medical sciences</subject><subject>General pharmacology</subject><subject>Ligands</subject><subject>Medical sciences</subject><subject>Models, Molecular</subject><subject>Neural Networks (Computer)</subject><subject>Peptide Fragments</subject><subject>Pharmacology. Drug treatments</subject><subject>Physicochemical properties. Structure-activity relationships</subject><subject>Protein Binding</subject><subject>Receptor, Serotonin, 5-HT1A - metabolism</subject><issn>0022-2623</issn><issn>1520-4804</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkE1LAzEURYMotlYX_gGZjYKL0XxN0tkItfhRKNiFrkMmk7Sp06QmM8L8e6e2VAVXD9473Ps4AJwjeIMgRrfLVQ4RzFl7APoowzClQ0gPQR9CjFPMMOmBkxiXEEKCMDkGPZTzjGKI-iCfLdpolaySe-tK6-bJzKt3XScTVzaqtt4lxodkZIx1tm6TWdCl_d6fgiMjq6jPdnMA3h4fXsfP6fTlaTIeTVNJCanTwgx5VkBdMJUXRJmiyJTkZZblmjCENZeZ0UajkkLFMadElpIhyiXJ9ZDgggzA3TZ33RQrXSrt6iArsQ52JUMrvLTi78XZhZj7T4E5Y11NF3C1Cwj-o9GxFisbla4q6bRvomCccULIBrzegir4GIM2-xIExUa02Ivu2IvfX_2QO7MdcLkDZOz0miCdsnHPYQzZkFL6w0kVxdI3wXUy_yn8AqGaku4</recordid><startdate>20091008</startdate><enddate>20091008</enddate><creator>Langham, James J</creator><creator>Cleves, Ann E</creator><creator>Spitzer, Russell</creator><creator>Kirshner, Daniel</creator><creator>Jain, Ajay N</creator><general>American Chemical Society</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091008</creationdate><title>Physical Binding Pocket Induction for Affinity Prediction</title><author>Langham, James J ; Cleves, Ann E ; Spitzer, Russell ; Kirshner, Daniel ; Jain, Ajay N</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a433t-bf875b0eb6c9b3cfbb5ca7d559e3612e7a5fefe1d40c72743ada6147a39e832b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Binding Sites</topic><topic>Biological and medical sciences</topic><topic>General pharmacology</topic><topic>Ligands</topic><topic>Medical sciences</topic><topic>Models, Molecular</topic><topic>Neural Networks (Computer)</topic><topic>Peptide Fragments</topic><topic>Pharmacology. Drug treatments</topic><topic>Physicochemical properties. Structure-activity relationships</topic><topic>Protein Binding</topic><topic>Receptor, Serotonin, 5-HT1A - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Langham, James J</creatorcontrib><creatorcontrib>Cleves, Ann E</creatorcontrib><creatorcontrib>Spitzer, Russell</creatorcontrib><creatorcontrib>Kirshner, Daniel</creatorcontrib><creatorcontrib>Jain, Ajay N</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of medicinal chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Langham, James J</au><au>Cleves, Ann E</au><au>Spitzer, Russell</au><au>Kirshner, Daniel</au><au>Jain, Ajay N</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Binding Pocket Induction for Affinity Prediction</atitle><jtitle>Journal of medicinal chemistry</jtitle><addtitle>J. Med. Chem</addtitle><date>2009-10-08</date><risdate>2009</risdate><volume>52</volume><issue>19</issue><spage>6107</spage><epage>6125</epage><pages>6107-6125</pages><issn>0022-2623</issn><eissn>1520-4804</eissn><coden>JMCMAR</coden><abstract>Computational methods for predicting ligand affinity where no protein structure is known generally take the form of regression analysis based on molecular features that have only a tangential relationship to a protein/ligand binding event. Such methods have limited utility when structural variation moves beyond congeneric series. We present a novel approach based on the multiple-instance learning method of Compass, where a physical model of a binding site is induced from ligands and their corresponding activity data. The model consists of molecular fragments that can account for multiple positions of literal protein residues. We demonstrate the method on 5HT1a ligands by training on a series with limited scaffold variation and testing on numerous ligands with variant scaffolds. Predictive error was between 0.5 and 1.0 log units (0.7−1.4 kcal/mol), with statistically significant rank correlations. Accurate activity predictions of novel ligands were demonstrated using a validation approach where a small number of ligands of limited structural variation known at a fixed time point were used to make predictions on a blind test set of widely varying molecules, some discovered at a much later time point.</abstract><cop>Columbus, OH</cop><pub>American Chemical Society</pub><pmid>19754201</pmid><doi>10.1021/jm901096y</doi><tpages>19</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0022-2623
ispartof Journal of medicinal chemistry, 2009-10, Vol.52 (19), p.6107-6125
issn 0022-2623
1520-4804
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2766559
source MEDLINE; ACS Publications
subjects Binding Sites
Biological and medical sciences
General pharmacology
Ligands
Medical sciences
Models, Molecular
Neural Networks (Computer)
Peptide Fragments
Pharmacology. Drug treatments
Physicochemical properties. Structure-activity relationships
Protein Binding
Receptor, Serotonin, 5-HT1A - metabolism
title Physical Binding Pocket Induction for Affinity Prediction
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A24%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Binding%20Pocket%20Induction%20for%20Affinity%20Prediction&rft.jtitle=Journal%20of%20medicinal%20chemistry&rft.au=Langham,%20James%20J&rft.date=2009-10-08&rft.volume=52&rft.issue=19&rft.spage=6107&rft.epage=6125&rft.pages=6107-6125&rft.issn=0022-2623&rft.eissn=1520-4804&rft.coden=JMCMAR&rft_id=info:doi/10.1021/jm901096y&rft_dat=%3Cproquest_pubme%3E67673339%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67673339&rft_id=info:pmid/19754201&rfr_iscdi=true