In Saccharomyces cerevisiae, yKu and Subtelomeric Core X Sequences Repress Homologous Recombination Near Telomeres as Part of the Same Pathway
Unlike in meiosis where recombination near telomeres is repressed, subtelomeric regions appear to recombine with each other frequently in vegetative cells with no detrimental consequences. To test whether or not such recombination is prevented in the core of chromosomes for maintenance of genome sta...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2009-10, Vol.183 (2), p.441-451 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 451 |
---|---|
container_issue | 2 |
container_start_page | 441 |
container_title | Genetics (Austin) |
container_volume | 183 |
creator | Marvin, Marcus E Griffin, Craig D Eyre, David E Barton, David B.H Louis, Edward J |
description | Unlike in meiosis where recombination near telomeres is repressed, subtelomeric regions appear to recombine with each other frequently in vegetative cells with no detrimental consequences. To test whether or not such recombination is prevented in the core of chromosomes for maintenance of genome stability, we measured allelic homologous recombination (HR) along chromosome arms and between different ectopic locations. We found that there is an increase of recombination at telomeres in wild-type cells compared with sequences at proximal subtelomeric and interstitial regions of the genome. We also screened for mutations that result in an increase in HR between a telomeric sequence and a more internal sequence, which normally exhibit very low rates of HR. YKU80 was hit most frequently in our screen, and we show that the yKu heterodimer specifically represses HR in the vicinity of telomeres. This repression of HR is not explained solely by the role of yKu in maintaining telomere length, silencing, or tethering to the nuclear periphery. Analysis of mutant strains harboring deleted core X sequences revealed a role for this subtelomeric element in preventing telomeric recombination. Furthermore, core X bestowed this protection as part of the same pathway as yKu. Our findings implicate a role for both yKu and core X in stabilizing the genome against recombination events involving telomeric sequences. |
doi_str_mv | 10.1534/genetics.109.106674 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2766308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1900799811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-671a7f2f2476ddfe33e9ee7f1cc9241ef23986f30ee61fdf0eabbc074d79aa3d3</originalsourceid><addsrcrecordid>eNpdkd1uEzEQhVcIREPhCZDA4gJuSPHYGzu-QUIR0IoKEGkl7izHO8662l2n9m5XeQmeGUcbfi8sS-NvzvjMKYqnQM9gwcs3W-yw9zadAVX5CCHLe8UMVMnnTHC4X8woBTEXksNJ8SilG0qpUIvlw-IElFgwkHJW_LjoyNpYW5sY2r3FRCxGvPPJG3xN9p8GYrqKrIdNj01oMXpLViEi-U7WeDtgd-j4hruIKZHz0IYmbMNwKNnQbnxneh868hlNJFeTQOZNIl9N7ElwpK8xj28xF_p6NPvHxQNnmoRPjvdpcf3h_dXqfH755ePF6t3l3JYl9NkTGOmYY6UUVeWQc1SI0oG1ipWAjnG1FI5TRAGuchTNZmOpLCupjOEVPy3eTrq7YdNiZbHro2n0LvrWxL0Oxut_Xzpf622400wKwekyC7w6CsSQ95B63fpksWlMh3kBWvISgFNQmXzxH3kThthld5pBCUyC4BniE2RjSCmi-_0VoPqQtv6Vdi4oPaWdu5797eJPzzHeDLycgNpv69FH1Kk1TZNx0OM4wpJrpvNGM_h8Ap0J2myjT_p6zejBwbLklCr-E7Krwg0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214127163</pqid></control><display><type>article</type><title>In Saccharomyces cerevisiae, yKu and Subtelomeric Core X Sequences Repress Homologous Recombination Near Telomeres as Part of the Same Pathway</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Marvin, Marcus E ; Griffin, Craig D ; Eyre, David E ; Barton, David B.H ; Louis, Edward J</creator><creatorcontrib>Marvin, Marcus E ; Griffin, Craig D ; Eyre, David E ; Barton, David B.H ; Louis, Edward J</creatorcontrib><description>Unlike in meiosis where recombination near telomeres is repressed, subtelomeric regions appear to recombine with each other frequently in vegetative cells with no detrimental consequences. To test whether or not such recombination is prevented in the core of chromosomes for maintenance of genome stability, we measured allelic homologous recombination (HR) along chromosome arms and between different ectopic locations. We found that there is an increase of recombination at telomeres in wild-type cells compared with sequences at proximal subtelomeric and interstitial regions of the genome. We also screened for mutations that result in an increase in HR between a telomeric sequence and a more internal sequence, which normally exhibit very low rates of HR. YKU80 was hit most frequently in our screen, and we show that the yKu heterodimer specifically represses HR in the vicinity of telomeres. This repression of HR is not explained solely by the role of yKu in maintaining telomere length, silencing, or tethering to the nuclear periphery. Analysis of mutant strains harboring deleted core X sequences revealed a role for this subtelomeric element in preventing telomeric recombination. Furthermore, core X bestowed this protection as part of the same pathway as yKu. Our findings implicate a role for both yKu and core X in stabilizing the genome against recombination events involving telomeric sequences.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.109.106674</identifier><identifier>PMID: 19652177</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Chromosome Mapping ; Chromosomes, Fungal - genetics ; core X sequence ; DNA repair ; DNA, Fungal - genetics ; DNA-binding proteins ; DNA-Binding Proteins - genetics ; Genetics ; Genome, Fungal - genetics ; Genomic Instability ; homologous recombination ; Investigations ; Mutation ; nucleotide sequences ; Proteins ; Recombination, Genetic - genetics ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Signal Transduction - genetics ; subtelomeric regions ; Telomere - genetics ; telomeres ; yeasts ; yKu protein ; yKu sequence</subject><ispartof>Genetics (Austin), 2009-10, Vol.183 (2), p.441-451</ispartof><rights>Copyright Genetics Society of America Oct 2009</rights><rights>Copyright © 2009 by the Genetics Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-671a7f2f2476ddfe33e9ee7f1cc9241ef23986f30ee61fdf0eabbc074d79aa3d3</citedby><cites>FETCH-LOGICAL-c441t-671a7f2f2476ddfe33e9ee7f1cc9241ef23986f30ee61fdf0eabbc074d79aa3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19652177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marvin, Marcus E</creatorcontrib><creatorcontrib>Griffin, Craig D</creatorcontrib><creatorcontrib>Eyre, David E</creatorcontrib><creatorcontrib>Barton, David B.H</creatorcontrib><creatorcontrib>Louis, Edward J</creatorcontrib><title>In Saccharomyces cerevisiae, yKu and Subtelomeric Core X Sequences Repress Homologous Recombination Near Telomeres as Part of the Same Pathway</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Unlike in meiosis where recombination near telomeres is repressed, subtelomeric regions appear to recombine with each other frequently in vegetative cells with no detrimental consequences. To test whether or not such recombination is prevented in the core of chromosomes for maintenance of genome stability, we measured allelic homologous recombination (HR) along chromosome arms and between different ectopic locations. We found that there is an increase of recombination at telomeres in wild-type cells compared with sequences at proximal subtelomeric and interstitial regions of the genome. We also screened for mutations that result in an increase in HR between a telomeric sequence and a more internal sequence, which normally exhibit very low rates of HR. YKU80 was hit most frequently in our screen, and we show that the yKu heterodimer specifically represses HR in the vicinity of telomeres. This repression of HR is not explained solely by the role of yKu in maintaining telomere length, silencing, or tethering to the nuclear periphery. Analysis of mutant strains harboring deleted core X sequences revealed a role for this subtelomeric element in preventing telomeric recombination. Furthermore, core X bestowed this protection as part of the same pathway as yKu. Our findings implicate a role for both yKu and core X in stabilizing the genome against recombination events involving telomeric sequences.</description><subject>Chromosome Mapping</subject><subject>Chromosomes, Fungal - genetics</subject><subject>core X sequence</subject><subject>DNA repair</subject><subject>DNA, Fungal - genetics</subject><subject>DNA-binding proteins</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Genetics</subject><subject>Genome, Fungal - genetics</subject><subject>Genomic Instability</subject><subject>homologous recombination</subject><subject>Investigations</subject><subject>Mutation</subject><subject>nucleotide sequences</subject><subject>Proteins</subject><subject>Recombination, Genetic - genetics</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Signal Transduction - genetics</subject><subject>subtelomeric regions</subject><subject>Telomere - genetics</subject><subject>telomeres</subject><subject>yeasts</subject><subject>yKu protein</subject><subject>yKu sequence</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkd1uEzEQhVcIREPhCZDA4gJuSPHYGzu-QUIR0IoKEGkl7izHO8662l2n9m5XeQmeGUcbfi8sS-NvzvjMKYqnQM9gwcs3W-yw9zadAVX5CCHLe8UMVMnnTHC4X8woBTEXksNJ8SilG0qpUIvlw-IElFgwkHJW_LjoyNpYW5sY2r3FRCxGvPPJG3xN9p8GYrqKrIdNj01oMXpLViEi-U7WeDtgd-j4hruIKZHz0IYmbMNwKNnQbnxneh868hlNJFeTQOZNIl9N7ElwpK8xj28xF_p6NPvHxQNnmoRPjvdpcf3h_dXqfH755ePF6t3l3JYl9NkTGOmYY6UUVeWQc1SI0oG1ipWAjnG1FI5TRAGuchTNZmOpLCupjOEVPy3eTrq7YdNiZbHro2n0LvrWxL0Oxut_Xzpf622400wKwekyC7w6CsSQ95B63fpksWlMh3kBWvISgFNQmXzxH3kThthld5pBCUyC4BniE2RjSCmi-_0VoPqQtv6Vdi4oPaWdu5797eJPzzHeDLycgNpv69FH1Kk1TZNx0OM4wpJrpvNGM_h8Ap0J2myjT_p6zejBwbLklCr-E7Krwg0</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Marvin, Marcus E</creator><creator>Griffin, Craig D</creator><creator>Eyre, David E</creator><creator>Barton, David B.H</creator><creator>Louis, Edward J</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091001</creationdate><title>In Saccharomyces cerevisiae, yKu and Subtelomeric Core X Sequences Repress Homologous Recombination Near Telomeres as Part of the Same Pathway</title><author>Marvin, Marcus E ; Griffin, Craig D ; Eyre, David E ; Barton, David B.H ; Louis, Edward J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-671a7f2f2476ddfe33e9ee7f1cc9241ef23986f30ee61fdf0eabbc074d79aa3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chromosome Mapping</topic><topic>Chromosomes, Fungal - genetics</topic><topic>core X sequence</topic><topic>DNA repair</topic><topic>DNA, Fungal - genetics</topic><topic>DNA-binding proteins</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Genetics</topic><topic>Genome, Fungal - genetics</topic><topic>Genomic Instability</topic><topic>homologous recombination</topic><topic>Investigations</topic><topic>Mutation</topic><topic>nucleotide sequences</topic><topic>Proteins</topic><topic>Recombination, Genetic - genetics</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Signal Transduction - genetics</topic><topic>subtelomeric regions</topic><topic>Telomere - genetics</topic><topic>telomeres</topic><topic>yeasts</topic><topic>yKu protein</topic><topic>yKu sequence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marvin, Marcus E</creatorcontrib><creatorcontrib>Griffin, Craig D</creatorcontrib><creatorcontrib>Eyre, David E</creatorcontrib><creatorcontrib>Barton, David B.H</creatorcontrib><creatorcontrib>Louis, Edward J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marvin, Marcus E</au><au>Griffin, Craig D</au><au>Eyre, David E</au><au>Barton, David B.H</au><au>Louis, Edward J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Saccharomyces cerevisiae, yKu and Subtelomeric Core X Sequences Repress Homologous Recombination Near Telomeres as Part of the Same Pathway</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>183</volume><issue>2</issue><spage>441</spage><epage>451</epage><pages>441-451</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Unlike in meiosis where recombination near telomeres is repressed, subtelomeric regions appear to recombine with each other frequently in vegetative cells with no detrimental consequences. To test whether or not such recombination is prevented in the core of chromosomes for maintenance of genome stability, we measured allelic homologous recombination (HR) along chromosome arms and between different ectopic locations. We found that there is an increase of recombination at telomeres in wild-type cells compared with sequences at proximal subtelomeric and interstitial regions of the genome. We also screened for mutations that result in an increase in HR between a telomeric sequence and a more internal sequence, which normally exhibit very low rates of HR. YKU80 was hit most frequently in our screen, and we show that the yKu heterodimer specifically represses HR in the vicinity of telomeres. This repression of HR is not explained solely by the role of yKu in maintaining telomere length, silencing, or tethering to the nuclear periphery. Analysis of mutant strains harboring deleted core X sequences revealed a role for this subtelomeric element in preventing telomeric recombination. Furthermore, core X bestowed this protection as part of the same pathway as yKu. Our findings implicate a role for both yKu and core X in stabilizing the genome against recombination events involving telomeric sequences.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>19652177</pmid><doi>10.1534/genetics.109.106674</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6731 |
ispartof | Genetics (Austin), 2009-10, Vol.183 (2), p.441-451 |
issn | 0016-6731 1943-2631 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2766308 |
source | MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection |
subjects | Chromosome Mapping Chromosomes, Fungal - genetics core X sequence DNA repair DNA, Fungal - genetics DNA-binding proteins DNA-Binding Proteins - genetics Genetics Genome, Fungal - genetics Genomic Instability homologous recombination Investigations Mutation nucleotide sequences Proteins Recombination, Genetic - genetics Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae Proteins - genetics Signal Transduction - genetics subtelomeric regions Telomere - genetics telomeres yeasts yKu protein yKu sequence |
title | In Saccharomyces cerevisiae, yKu and Subtelomeric Core X Sequences Repress Homologous Recombination Near Telomeres as Part of the Same Pathway |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Saccharomyces%20cerevisiae,%20yKu%20and%20Subtelomeric%20Core%20X%20Sequences%20Repress%20Homologous%20Recombination%20Near%20Telomeres%20as%20Part%20of%20the%20Same%20Pathway&rft.jtitle=Genetics%20(Austin)&rft.au=Marvin,%20Marcus%20E&rft.date=2009-10-01&rft.volume=183&rft.issue=2&rft.spage=441&rft.epage=451&rft.pages=441-451&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.109.106674&rft_dat=%3Cproquest_pubme%3E1900799811%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214127163&rft_id=info:pmid/19652177&rfr_iscdi=true |