In Saccharomyces cerevisiae, yKu and Subtelomeric Core X Sequences Repress Homologous Recombination Near Telomeres as Part of the Same Pathway

Unlike in meiosis where recombination near telomeres is repressed, subtelomeric regions appear to recombine with each other frequently in vegetative cells with no detrimental consequences. To test whether or not such recombination is prevented in the core of chromosomes for maintenance of genome sta...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genetics (Austin) 2009-10, Vol.183 (2), p.441-451
Hauptverfasser: Marvin, Marcus E, Griffin, Craig D, Eyre, David E, Barton, David B.H, Louis, Edward J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 451
container_issue 2
container_start_page 441
container_title Genetics (Austin)
container_volume 183
creator Marvin, Marcus E
Griffin, Craig D
Eyre, David E
Barton, David B.H
Louis, Edward J
description Unlike in meiosis where recombination near telomeres is repressed, subtelomeric regions appear to recombine with each other frequently in vegetative cells with no detrimental consequences. To test whether or not such recombination is prevented in the core of chromosomes for maintenance of genome stability, we measured allelic homologous recombination (HR) along chromosome arms and between different ectopic locations. We found that there is an increase of recombination at telomeres in wild-type cells compared with sequences at proximal subtelomeric and interstitial regions of the genome. We also screened for mutations that result in an increase in HR between a telomeric sequence and a more internal sequence, which normally exhibit very low rates of HR. YKU80 was hit most frequently in our screen, and we show that the yKu heterodimer specifically represses HR in the vicinity of telomeres. This repression of HR is not explained solely by the role of yKu in maintaining telomere length, silencing, or tethering to the nuclear periphery. Analysis of mutant strains harboring deleted core X sequences revealed a role for this subtelomeric element in preventing telomeric recombination. Furthermore, core X bestowed this protection as part of the same pathway as yKu. Our findings implicate a role for both yKu and core X in stabilizing the genome against recombination events involving telomeric sequences.
doi_str_mv 10.1534/genetics.109.106674
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2766308</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1900799811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c441t-671a7f2f2476ddfe33e9ee7f1cc9241ef23986f30ee61fdf0eabbc074d79aa3d3</originalsourceid><addsrcrecordid>eNpdkd1uEzEQhVcIREPhCZDA4gJuSPHYGzu-QUIR0IoKEGkl7izHO8662l2n9m5XeQmeGUcbfi8sS-NvzvjMKYqnQM9gwcs3W-yw9zadAVX5CCHLe8UMVMnnTHC4X8woBTEXksNJ8SilG0qpUIvlw-IElFgwkHJW_LjoyNpYW5sY2r3FRCxGvPPJG3xN9p8GYrqKrIdNj01oMXpLViEi-U7WeDtgd-j4hruIKZHz0IYmbMNwKNnQbnxneh868hlNJFeTQOZNIl9N7ElwpK8xj28xF_p6NPvHxQNnmoRPjvdpcf3h_dXqfH755ePF6t3l3JYl9NkTGOmYY6UUVeWQc1SI0oG1ipWAjnG1FI5TRAGuchTNZmOpLCupjOEVPy3eTrq7YdNiZbHro2n0LvrWxL0Oxut_Xzpf622400wKwekyC7w6CsSQ95B63fpksWlMh3kBWvISgFNQmXzxH3kThthld5pBCUyC4BniE2RjSCmi-_0VoPqQtv6Vdi4oPaWdu5797eJPzzHeDLycgNpv69FH1Kk1TZNx0OM4wpJrpvNGM_h8Ap0J2myjT_p6zejBwbLklCr-E7Krwg0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214127163</pqid></control><display><type>article</type><title>In Saccharomyces cerevisiae, yKu and Subtelomeric Core X Sequences Repress Homologous Recombination Near Telomeres as Part of the Same Pathway</title><source>MEDLINE</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Marvin, Marcus E ; Griffin, Craig D ; Eyre, David E ; Barton, David B.H ; Louis, Edward J</creator><creatorcontrib>Marvin, Marcus E ; Griffin, Craig D ; Eyre, David E ; Barton, David B.H ; Louis, Edward J</creatorcontrib><description>Unlike in meiosis where recombination near telomeres is repressed, subtelomeric regions appear to recombine with each other frequently in vegetative cells with no detrimental consequences. To test whether or not such recombination is prevented in the core of chromosomes for maintenance of genome stability, we measured allelic homologous recombination (HR) along chromosome arms and between different ectopic locations. We found that there is an increase of recombination at telomeres in wild-type cells compared with sequences at proximal subtelomeric and interstitial regions of the genome. We also screened for mutations that result in an increase in HR between a telomeric sequence and a more internal sequence, which normally exhibit very low rates of HR. YKU80 was hit most frequently in our screen, and we show that the yKu heterodimer specifically represses HR in the vicinity of telomeres. This repression of HR is not explained solely by the role of yKu in maintaining telomere length, silencing, or tethering to the nuclear periphery. Analysis of mutant strains harboring deleted core X sequences revealed a role for this subtelomeric element in preventing telomeric recombination. Furthermore, core X bestowed this protection as part of the same pathway as yKu. Our findings implicate a role for both yKu and core X in stabilizing the genome against recombination events involving telomeric sequences.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.109.106674</identifier><identifier>PMID: 19652177</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Chromosome Mapping ; Chromosomes, Fungal - genetics ; core X sequence ; DNA repair ; DNA, Fungal - genetics ; DNA-binding proteins ; DNA-Binding Proteins - genetics ; Genetics ; Genome, Fungal - genetics ; Genomic Instability ; homologous recombination ; Investigations ; Mutation ; nucleotide sequences ; Proteins ; Recombination, Genetic - genetics ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae Proteins - genetics ; Signal Transduction - genetics ; subtelomeric regions ; Telomere - genetics ; telomeres ; yeasts ; yKu protein ; yKu sequence</subject><ispartof>Genetics (Austin), 2009-10, Vol.183 (2), p.441-451</ispartof><rights>Copyright Genetics Society of America Oct 2009</rights><rights>Copyright © 2009 by the Genetics Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c441t-671a7f2f2476ddfe33e9ee7f1cc9241ef23986f30ee61fdf0eabbc074d79aa3d3</citedby><cites>FETCH-LOGICAL-c441t-671a7f2f2476ddfe33e9ee7f1cc9241ef23986f30ee61fdf0eabbc074d79aa3d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,781,785,886,27926,27927</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19652177$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Marvin, Marcus E</creatorcontrib><creatorcontrib>Griffin, Craig D</creatorcontrib><creatorcontrib>Eyre, David E</creatorcontrib><creatorcontrib>Barton, David B.H</creatorcontrib><creatorcontrib>Louis, Edward J</creatorcontrib><title>In Saccharomyces cerevisiae, yKu and Subtelomeric Core X Sequences Repress Homologous Recombination Near Telomeres as Part of the Same Pathway</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Unlike in meiosis where recombination near telomeres is repressed, subtelomeric regions appear to recombine with each other frequently in vegetative cells with no detrimental consequences. To test whether or not such recombination is prevented in the core of chromosomes for maintenance of genome stability, we measured allelic homologous recombination (HR) along chromosome arms and between different ectopic locations. We found that there is an increase of recombination at telomeres in wild-type cells compared with sequences at proximal subtelomeric and interstitial regions of the genome. We also screened for mutations that result in an increase in HR between a telomeric sequence and a more internal sequence, which normally exhibit very low rates of HR. YKU80 was hit most frequently in our screen, and we show that the yKu heterodimer specifically represses HR in the vicinity of telomeres. This repression of HR is not explained solely by the role of yKu in maintaining telomere length, silencing, or tethering to the nuclear periphery. Analysis of mutant strains harboring deleted core X sequences revealed a role for this subtelomeric element in preventing telomeric recombination. Furthermore, core X bestowed this protection as part of the same pathway as yKu. Our findings implicate a role for both yKu and core X in stabilizing the genome against recombination events involving telomeric sequences.</description><subject>Chromosome Mapping</subject><subject>Chromosomes, Fungal - genetics</subject><subject>core X sequence</subject><subject>DNA repair</subject><subject>DNA, Fungal - genetics</subject><subject>DNA-binding proteins</subject><subject>DNA-Binding Proteins - genetics</subject><subject>Genetics</subject><subject>Genome, Fungal - genetics</subject><subject>Genomic Instability</subject><subject>homologous recombination</subject><subject>Investigations</subject><subject>Mutation</subject><subject>nucleotide sequences</subject><subject>Proteins</subject><subject>Recombination, Genetic - genetics</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Signal Transduction - genetics</subject><subject>subtelomeric regions</subject><subject>Telomere - genetics</subject><subject>telomeres</subject><subject>yeasts</subject><subject>yKu protein</subject><subject>yKu sequence</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkd1uEzEQhVcIREPhCZDA4gJuSPHYGzu-QUIR0IoKEGkl7izHO8662l2n9m5XeQmeGUcbfi8sS-NvzvjMKYqnQM9gwcs3W-yw9zadAVX5CCHLe8UMVMnnTHC4X8woBTEXksNJ8SilG0qpUIvlw-IElFgwkHJW_LjoyNpYW5sY2r3FRCxGvPPJG3xN9p8GYrqKrIdNj01oMXpLViEi-U7WeDtgd-j4hruIKZHz0IYmbMNwKNnQbnxneh868hlNJFeTQOZNIl9N7ElwpK8xj28xF_p6NPvHxQNnmoRPjvdpcf3h_dXqfH755ePF6t3l3JYl9NkTGOmYY6UUVeWQc1SI0oG1ipWAjnG1FI5TRAGuchTNZmOpLCupjOEVPy3eTrq7YdNiZbHro2n0LvrWxL0Oxut_Xzpf622400wKwekyC7w6CsSQ95B63fpksWlMh3kBWvISgFNQmXzxH3kThthld5pBCUyC4BniE2RjSCmi-_0VoPqQtv6Vdi4oPaWdu5797eJPzzHeDLycgNpv69FH1Kk1TZNx0OM4wpJrpvNGM_h8Ap0J2myjT_p6zejBwbLklCr-E7Krwg0</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Marvin, Marcus E</creator><creator>Griffin, Craig D</creator><creator>Eyre, David E</creator><creator>Barton, David B.H</creator><creator>Louis, Edward J</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091001</creationdate><title>In Saccharomyces cerevisiae, yKu and Subtelomeric Core X Sequences Repress Homologous Recombination Near Telomeres as Part of the Same Pathway</title><author>Marvin, Marcus E ; Griffin, Craig D ; Eyre, David E ; Barton, David B.H ; Louis, Edward J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c441t-671a7f2f2476ddfe33e9ee7f1cc9241ef23986f30ee61fdf0eabbc074d79aa3d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chromosome Mapping</topic><topic>Chromosomes, Fungal - genetics</topic><topic>core X sequence</topic><topic>DNA repair</topic><topic>DNA, Fungal - genetics</topic><topic>DNA-binding proteins</topic><topic>DNA-Binding Proteins - genetics</topic><topic>Genetics</topic><topic>Genome, Fungal - genetics</topic><topic>Genomic Instability</topic><topic>homologous recombination</topic><topic>Investigations</topic><topic>Mutation</topic><topic>nucleotide sequences</topic><topic>Proteins</topic><topic>Recombination, Genetic - genetics</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Signal Transduction - genetics</topic><topic>subtelomeric regions</topic><topic>Telomere - genetics</topic><topic>telomeres</topic><topic>yeasts</topic><topic>yKu protein</topic><topic>yKu sequence</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Marvin, Marcus E</creatorcontrib><creatorcontrib>Griffin, Craig D</creatorcontrib><creatorcontrib>Eyre, David E</creatorcontrib><creatorcontrib>Barton, David B.H</creatorcontrib><creatorcontrib>Louis, Edward J</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>ProQuest Science Journals</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Marvin, Marcus E</au><au>Griffin, Craig D</au><au>Eyre, David E</au><au>Barton, David B.H</au><au>Louis, Edward J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>In Saccharomyces cerevisiae, yKu and Subtelomeric Core X Sequences Repress Homologous Recombination Near Telomeres as Part of the Same Pathway</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>183</volume><issue>2</issue><spage>441</spage><epage>451</epage><pages>441-451</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Unlike in meiosis where recombination near telomeres is repressed, subtelomeric regions appear to recombine with each other frequently in vegetative cells with no detrimental consequences. To test whether or not such recombination is prevented in the core of chromosomes for maintenance of genome stability, we measured allelic homologous recombination (HR) along chromosome arms and between different ectopic locations. We found that there is an increase of recombination at telomeres in wild-type cells compared with sequences at proximal subtelomeric and interstitial regions of the genome. We also screened for mutations that result in an increase in HR between a telomeric sequence and a more internal sequence, which normally exhibit very low rates of HR. YKU80 was hit most frequently in our screen, and we show that the yKu heterodimer specifically represses HR in the vicinity of telomeres. This repression of HR is not explained solely by the role of yKu in maintaining telomere length, silencing, or tethering to the nuclear periphery. Analysis of mutant strains harboring deleted core X sequences revealed a role for this subtelomeric element in preventing telomeric recombination. Furthermore, core X bestowed this protection as part of the same pathway as yKu. Our findings implicate a role for both yKu and core X in stabilizing the genome against recombination events involving telomeric sequences.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>19652177</pmid><doi>10.1534/genetics.109.106674</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0016-6731
ispartof Genetics (Austin), 2009-10, Vol.183 (2), p.441-451
issn 0016-6731
1943-2631
1943-2631
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2766308
source MEDLINE; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Chromosome Mapping
Chromosomes, Fungal - genetics
core X sequence
DNA repair
DNA, Fungal - genetics
DNA-binding proteins
DNA-Binding Proteins - genetics
Genetics
Genome, Fungal - genetics
Genomic Instability
homologous recombination
Investigations
Mutation
nucleotide sequences
Proteins
Recombination, Genetic - genetics
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae Proteins - genetics
Signal Transduction - genetics
subtelomeric regions
Telomere - genetics
telomeres
yeasts
yKu protein
yKu sequence
title In Saccharomyces cerevisiae, yKu and Subtelomeric Core X Sequences Repress Homologous Recombination Near Telomeres as Part of the Same Pathway
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-18T03%3A56%3A19IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=In%20Saccharomyces%20cerevisiae,%20yKu%20and%20Subtelomeric%20Core%20X%20Sequences%20Repress%20Homologous%20Recombination%20Near%20Telomeres%20as%20Part%20of%20the%20Same%20Pathway&rft.jtitle=Genetics%20(Austin)&rft.au=Marvin,%20Marcus%20E&rft.date=2009-10-01&rft.volume=183&rft.issue=2&rft.spage=441&rft.epage=451&rft.pages=441-451&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.109.106674&rft_dat=%3Cproquest_pubme%3E1900799811%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214127163&rft_id=info:pmid/19652177&rfr_iscdi=true