Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection
Nuclear uptake of plasmid DNA is one of the many cellular barriers that limit the efficiency of non-viral gene delivery systems. We have determined the number of plasmids that reach the nucleus of a transfected cell using an internally standardized quantitative PCR (qPCR) assay. We isolated nuclei u...
Gespeichert in:
Veröffentlicht in: | Journal of controlled release 2009-04, Vol.135 (2), p.166-174 |
---|---|
Hauptverfasser: | , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 174 |
---|---|
container_issue | 2 |
container_start_page | 166 |
container_title | Journal of controlled release |
container_volume | 135 |
creator | Cohen, Richard N. van der Aa, Marieke A.E.M. Macaraeg, Nichole Lee, Ai Ping Szoka, Francis C. |
description | Nuclear uptake of plasmid DNA is one of the many cellular barriers that limit the efficiency of non-viral gene delivery systems. We have determined the number of plasmids that reach the nucleus of a transfected cell using an internally standardized quantitative PCR (qPCR) assay. We isolated nuclei using two different protocols: a density gradient technique and a detergent-based method. The density gradient procedure yielded nuclei with substantially less adhering plasmids on the outside of the nuclei. Using the density gradient protocol we determined that cells transfected with Lipofectamine™ lipoplexes or polyethylenimine polyplexes contained between 75 and 50,000 plasmids/nucleus, depending on the applied plasmid dose. Any increase above 3000 plasmids/nucleus resulted in only marginal increases in transgene expression. Furthermore, lipoplex-delivered plasmids were more efficiently expressed, on the basis of protein expression per plasmid number in the nucleus, than polyplex-delivered plasmids. This indicates that polymer may remain bound to some plasmids in the nucleus. Lastly, by sorting transfected cells into high- and low-expressing sub-populations, we observe that a sub-population of cells contain 3× greater plasmids/nucleus but express nearly 100× more transgene than other cells within a single transfection reaction. Taken together these results suggest the importance of considering the processes downstream from nuclear entry for strategies to improve the efficiency of gene transfer reagents.
An improved nuclear isolation procedure and a quantitative internally standardized PCR assay allow for the quantification of plasmid delivery to the nucleus by two commonly used cell transfection reagents.
[Display omitted] |
doi_str_mv | 10.1016/j.jconrel.2008.12.016 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2765102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168365909000236</els_id><sourcerecordid>67083050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-1f746687f87460e5f5776af4c247aa7efdfe21cb6a72e098f67d01ad260c76333</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhS0EopfCTwB5A7sE24kf2YCq8ihSVYQEOyTLdcbUV752sJOq_ff4cqNCV12NPP7m6MwchF5S0lJCxdttu7UpZggtI0S1lLW1-whtqJJd0w8Df4w2taOaTvDhCD0rZUsI4V0vn6IjOjBKCRs26Oe3xcTZO2_N7FPEyeEpmLLzI_5wcYJtmjwU7COerwDHxQZYCjZuhoyDn9IU4AabOOIphdu_jzmbWBzYvdpz9MSZUODFWo_Rj08fv5-eNedfP385PTlvLB_Y3FAneyGUdKpWAtxxKYVxvWW9NEaCGx0wai-FkQzIoJyQI6FmZIJYKbquO0bvDrrTcrmD0UKsLoKest-ZfKuT8fr-T_RX-le61kwKXu9QBd6sAjn9XqDMeueLhRBMhLQULSRRHeHkQZBVaJC9qiA_gDanUjK4OzeU6H2AeqvXAPU-QE2Zrt069-r_Vf5NrYlV4PUKmGJNcPXc1pc7jtFOCSr2Tt8fOKiHv_aQdbEeooXR55qOHpN_wMof2Fa-CA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20509748</pqid></control><display><type>article</type><title>Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cohen, Richard N. ; van der Aa, Marieke A.E.M. ; Macaraeg, Nichole ; Lee, Ai Ping ; Szoka, Francis C.</creator><creatorcontrib>Cohen, Richard N. ; van der Aa, Marieke A.E.M. ; Macaraeg, Nichole ; Lee, Ai Ping ; Szoka, Francis C.</creatorcontrib><description>Nuclear uptake of plasmid DNA is one of the many cellular barriers that limit the efficiency of non-viral gene delivery systems. We have determined the number of plasmids that reach the nucleus of a transfected cell using an internally standardized quantitative PCR (qPCR) assay. We isolated nuclei using two different protocols: a density gradient technique and a detergent-based method. The density gradient procedure yielded nuclei with substantially less adhering plasmids on the outside of the nuclei. Using the density gradient protocol we determined that cells transfected with Lipofectamine™ lipoplexes or polyethylenimine polyplexes contained between 75 and 50,000 plasmids/nucleus, depending on the applied plasmid dose. Any increase above 3000 plasmids/nucleus resulted in only marginal increases in transgene expression. Furthermore, lipoplex-delivered plasmids were more efficiently expressed, on the basis of protein expression per plasmid number in the nucleus, than polyplex-delivered plasmids. This indicates that polymer may remain bound to some plasmids in the nucleus. Lastly, by sorting transfected cells into high- and low-expressing sub-populations, we observe that a sub-population of cells contain 3× greater plasmids/nucleus but express nearly 100× more transgene than other cells within a single transfection reaction. Taken together these results suggest the importance of considering the processes downstream from nuclear entry for strategies to improve the efficiency of gene transfer reagents.
An improved nuclear isolation procedure and a quantitative internally standardized PCR assay allow for the quantification of plasmid delivery to the nucleus by two commonly used cell transfection reagents.
[Display omitted]</description><identifier>ISSN: 0168-3659</identifier><identifier>EISSN: 1873-4995</identifier><identifier>DOI: 10.1016/j.jconrel.2008.12.016</identifier><identifier>PMID: 19211029</identifier><identifier>CODEN: JCREEC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Animals ; Biological and medical sciences ; Biological Transport, Active ; Carcinoma - pathology ; Cell Fractionation ; Cell Line, Tumor ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Contrast Media - chemistry ; Detergents - chemistry ; DNA - genetics ; DNA - isolation & purification ; Drug delivery ; Gene Expression ; Gene therapy ; Gene Transfer Techniques ; General pharmacology ; Genetic Therapy ; Genetic Vectors ; Humans ; Intracellular trafficking ; Iodixanol ; Luciferases - metabolism ; Lung Neoplasms - pathology ; Medical sciences ; Melanoma, Experimental - pathology ; Mice ; Molecular Weight ; Nucleic Acid Amplification Techniques ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Plasmids - genetics ; Plasmids - metabolism ; Polyethyleneimine - chemistry ; Polymerase Chain Reaction - standards ; Time Factors ; Transfection ; Transgenes ; Triiodobenzoic Acids - chemistry</subject><ispartof>Journal of controlled release, 2009-04, Vol.135 (2), p.166-174</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-1f746687f87460e5f5776af4c247aa7efdfe21cb6a72e098f67d01ad260c76333</citedby><cites>FETCH-LOGICAL-c592t-1f746687f87460e5f5776af4c247aa7efdfe21cb6a72e098f67d01ad260c76333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jconrel.2008.12.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21386160$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19211029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, Richard N.</creatorcontrib><creatorcontrib>van der Aa, Marieke A.E.M.</creatorcontrib><creatorcontrib>Macaraeg, Nichole</creatorcontrib><creatorcontrib>Lee, Ai Ping</creatorcontrib><creatorcontrib>Szoka, Francis C.</creatorcontrib><title>Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection</title><title>Journal of controlled release</title><addtitle>J Control Release</addtitle><description>Nuclear uptake of plasmid DNA is one of the many cellular barriers that limit the efficiency of non-viral gene delivery systems. We have determined the number of plasmids that reach the nucleus of a transfected cell using an internally standardized quantitative PCR (qPCR) assay. We isolated nuclei using two different protocols: a density gradient technique and a detergent-based method. The density gradient procedure yielded nuclei with substantially less adhering plasmids on the outside of the nuclei. Using the density gradient protocol we determined that cells transfected with Lipofectamine™ lipoplexes or polyethylenimine polyplexes contained between 75 and 50,000 plasmids/nucleus, depending on the applied plasmid dose. Any increase above 3000 plasmids/nucleus resulted in only marginal increases in transgene expression. Furthermore, lipoplex-delivered plasmids were more efficiently expressed, on the basis of protein expression per plasmid number in the nucleus, than polyplex-delivered plasmids. This indicates that polymer may remain bound to some plasmids in the nucleus. Lastly, by sorting transfected cells into high- and low-expressing sub-populations, we observe that a sub-population of cells contain 3× greater plasmids/nucleus but express nearly 100× more transgene than other cells within a single transfection reaction. Taken together these results suggest the importance of considering the processes downstream from nuclear entry for strategies to improve the efficiency of gene transfer reagents.
An improved nuclear isolation procedure and a quantitative internally standardized PCR assay allow for the quantification of plasmid delivery to the nucleus by two commonly used cell transfection reagents.
[Display omitted]</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Transport, Active</subject><subject>Carcinoma - pathology</subject><subject>Cell Fractionation</subject><subject>Cell Line, Tumor</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Contrast Media - chemistry</subject><subject>Detergents - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - isolation & purification</subject><subject>Drug delivery</subject><subject>Gene Expression</subject><subject>Gene therapy</subject><subject>Gene Transfer Techniques</subject><subject>General pharmacology</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors</subject><subject>Humans</subject><subject>Intracellular trafficking</subject><subject>Iodixanol</subject><subject>Luciferases - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Medical sciences</subject><subject>Melanoma, Experimental - pathology</subject><subject>Mice</subject><subject>Molecular Weight</subject><subject>Nucleic Acid Amplification Techniques</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Plasmids - genetics</subject><subject>Plasmids - metabolism</subject><subject>Polyethyleneimine - chemistry</subject><subject>Polymerase Chain Reaction - standards</subject><subject>Time Factors</subject><subject>Transfection</subject><subject>Transgenes</subject><subject>Triiodobenzoic Acids - chemistry</subject><issn>0168-3659</issn><issn>1873-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1TAQhS0EopfCTwB5A7sE24kf2YCq8ihSVYQEOyTLdcbUV752sJOq_ff4cqNCV12NPP7m6MwchF5S0lJCxdttu7UpZggtI0S1lLW1-whtqJJd0w8Df4w2taOaTvDhCD0rZUsI4V0vn6IjOjBKCRs26Oe3xcTZO2_N7FPEyeEpmLLzI_5wcYJtmjwU7COerwDHxQZYCjZuhoyDn9IU4AabOOIphdu_jzmbWBzYvdpz9MSZUODFWo_Rj08fv5-eNedfP385PTlvLB_Y3FAneyGUdKpWAtxxKYVxvWW9NEaCGx0wai-FkQzIoJyQI6FmZIJYKbquO0bvDrrTcrmD0UKsLoKest-ZfKuT8fr-T_RX-le61kwKXu9QBd6sAjn9XqDMeueLhRBMhLQULSRRHeHkQZBVaJC9qiA_gDanUjK4OzeU6H2AeqvXAPU-QE2Zrt069-r_Vf5NrYlV4PUKmGJNcPXc1pc7jtFOCSr2Tt8fOKiHv_aQdbEeooXR55qOHpN_wMof2Fa-CA</recordid><startdate>20090417</startdate><enddate>20090417</enddate><creator>Cohen, Richard N.</creator><creator>van der Aa, Marieke A.E.M.</creator><creator>Macaraeg, Nichole</creator><creator>Lee, Ai Ping</creator><creator>Szoka, Francis C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090417</creationdate><title>Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection</title><author>Cohen, Richard N. ; van der Aa, Marieke A.E.M. ; Macaraeg, Nichole ; Lee, Ai Ping ; Szoka, Francis C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-1f746687f87460e5f5776af4c247aa7efdfe21cb6a72e098f67d01ad260c76333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Transport, Active</topic><topic>Carcinoma - pathology</topic><topic>Cell Fractionation</topic><topic>Cell Line, Tumor</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Contrast Media - chemistry</topic><topic>Detergents - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - isolation & purification</topic><topic>Drug delivery</topic><topic>Gene Expression</topic><topic>Gene therapy</topic><topic>Gene Transfer Techniques</topic><topic>General pharmacology</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors</topic><topic>Humans</topic><topic>Intracellular trafficking</topic><topic>Iodixanol</topic><topic>Luciferases - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Medical sciences</topic><topic>Melanoma, Experimental - pathology</topic><topic>Mice</topic><topic>Molecular Weight</topic><topic>Nucleic Acid Amplification Techniques</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Plasmids - genetics</topic><topic>Plasmids - metabolism</topic><topic>Polyethyleneimine - chemistry</topic><topic>Polymerase Chain Reaction - standards</topic><topic>Time Factors</topic><topic>Transfection</topic><topic>Transgenes</topic><topic>Triiodobenzoic Acids - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Richard N.</creatorcontrib><creatorcontrib>van der Aa, Marieke A.E.M.</creatorcontrib><creatorcontrib>Macaraeg, Nichole</creatorcontrib><creatorcontrib>Lee, Ai Ping</creatorcontrib><creatorcontrib>Szoka, Francis C.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of controlled release</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Richard N.</au><au>van der Aa, Marieke A.E.M.</au><au>Macaraeg, Nichole</au><au>Lee, Ai Ping</au><au>Szoka, Francis C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection</atitle><jtitle>Journal of controlled release</jtitle><addtitle>J Control Release</addtitle><date>2009-04-17</date><risdate>2009</risdate><volume>135</volume><issue>2</issue><spage>166</spage><epage>174</epage><pages>166-174</pages><issn>0168-3659</issn><eissn>1873-4995</eissn><coden>JCREEC</coden><abstract>Nuclear uptake of plasmid DNA is one of the many cellular barriers that limit the efficiency of non-viral gene delivery systems. We have determined the number of plasmids that reach the nucleus of a transfected cell using an internally standardized quantitative PCR (qPCR) assay. We isolated nuclei using two different protocols: a density gradient technique and a detergent-based method. The density gradient procedure yielded nuclei with substantially less adhering plasmids on the outside of the nuclei. Using the density gradient protocol we determined that cells transfected with Lipofectamine™ lipoplexes or polyethylenimine polyplexes contained between 75 and 50,000 plasmids/nucleus, depending on the applied plasmid dose. Any increase above 3000 plasmids/nucleus resulted in only marginal increases in transgene expression. Furthermore, lipoplex-delivered plasmids were more efficiently expressed, on the basis of protein expression per plasmid number in the nucleus, than polyplex-delivered plasmids. This indicates that polymer may remain bound to some plasmids in the nucleus. Lastly, by sorting transfected cells into high- and low-expressing sub-populations, we observe that a sub-population of cells contain 3× greater plasmids/nucleus but express nearly 100× more transgene than other cells within a single transfection reaction. Taken together these results suggest the importance of considering the processes downstream from nuclear entry for strategies to improve the efficiency of gene transfer reagents.
An improved nuclear isolation procedure and a quantitative internally standardized PCR assay allow for the quantification of plasmid delivery to the nucleus by two commonly used cell transfection reagents.
[Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>19211029</pmid><doi>10.1016/j.jconrel.2008.12.016</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0168-3659 |
ispartof | Journal of controlled release, 2009-04, Vol.135 (2), p.166-174 |
issn | 0168-3659 1873-4995 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2765102 |
source | MEDLINE; ScienceDirect Journals (5 years ago - present) |
subjects | Animals Biological and medical sciences Biological Transport, Active Carcinoma - pathology Cell Fractionation Cell Line, Tumor Cell Nucleus - genetics Cell Nucleus - metabolism Contrast Media - chemistry Detergents - chemistry DNA - genetics DNA - isolation & purification Drug delivery Gene Expression Gene therapy Gene Transfer Techniques General pharmacology Genetic Therapy Genetic Vectors Humans Intracellular trafficking Iodixanol Luciferases - metabolism Lung Neoplasms - pathology Medical sciences Melanoma, Experimental - pathology Mice Molecular Weight Nucleic Acid Amplification Techniques Pharmaceutical technology. Pharmaceutical industry Pharmacology. Drug treatments Plasmids - genetics Plasmids - metabolism Polyethyleneimine - chemistry Polymerase Chain Reaction - standards Time Factors Transfection Transgenes Triiodobenzoic Acids - chemistry |
title | Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20plasmid%20DNA%20copies%20in%20the%20nucleus%20after%20lipoplex%20and%20polyplex%20transfection&rft.jtitle=Journal%20of%20controlled%20release&rft.au=Cohen,%20Richard%20N.&rft.date=2009-04-17&rft.volume=135&rft.issue=2&rft.spage=166&rft.epage=174&rft.pages=166-174&rft.issn=0168-3659&rft.eissn=1873-4995&rft.coden=JCREEC&rft_id=info:doi/10.1016/j.jconrel.2008.12.016&rft_dat=%3Cproquest_pubme%3E67083050%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20509748&rft_id=info:pmid/19211029&rft_els_id=S0168365909000236&rfr_iscdi=true |