Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection

Nuclear uptake of plasmid DNA is one of the many cellular barriers that limit the efficiency of non-viral gene delivery systems. We have determined the number of plasmids that reach the nucleus of a transfected cell using an internally standardized quantitative PCR (qPCR) assay. We isolated nuclei u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of controlled release 2009-04, Vol.135 (2), p.166-174
Hauptverfasser: Cohen, Richard N., van der Aa, Marieke A.E.M., Macaraeg, Nichole, Lee, Ai Ping, Szoka, Francis C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 174
container_issue 2
container_start_page 166
container_title Journal of controlled release
container_volume 135
creator Cohen, Richard N.
van der Aa, Marieke A.E.M.
Macaraeg, Nichole
Lee, Ai Ping
Szoka, Francis C.
description Nuclear uptake of plasmid DNA is one of the many cellular barriers that limit the efficiency of non-viral gene delivery systems. We have determined the number of plasmids that reach the nucleus of a transfected cell using an internally standardized quantitative PCR (qPCR) assay. We isolated nuclei using two different protocols: a density gradient technique and a detergent-based method. The density gradient procedure yielded nuclei with substantially less adhering plasmids on the outside of the nuclei. Using the density gradient protocol we determined that cells transfected with Lipofectamine™ lipoplexes or polyethylenimine polyplexes contained between 75 and 50,000 plasmids/nucleus, depending on the applied plasmid dose. Any increase above 3000 plasmids/nucleus resulted in only marginal increases in transgene expression. Furthermore, lipoplex-delivered plasmids were more efficiently expressed, on the basis of protein expression per plasmid number in the nucleus, than polyplex-delivered plasmids. This indicates that polymer may remain bound to some plasmids in the nucleus. Lastly, by sorting transfected cells into high- and low-expressing sub-populations, we observe that a sub-population of cells contain 3× greater plasmids/nucleus but express nearly 100× more transgene than other cells within a single transfection reaction. Taken together these results suggest the importance of considering the processes downstream from nuclear entry for strategies to improve the efficiency of gene transfer reagents. An improved nuclear isolation procedure and a quantitative internally standardized PCR assay allow for the quantification of plasmid delivery to the nucleus by two commonly used cell transfection reagents. [Display omitted]
doi_str_mv 10.1016/j.jconrel.2008.12.016
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2765102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0168365909000236</els_id><sourcerecordid>67083050</sourcerecordid><originalsourceid>FETCH-LOGICAL-c592t-1f746687f87460e5f5776af4c247aa7efdfe21cb6a72e098f67d01ad260c76333</originalsourceid><addsrcrecordid>eNqFkUtv1TAQhS0EopfCTwB5A7sE24kf2YCq8ihSVYQEOyTLdcbUV752sJOq_ff4cqNCV12NPP7m6MwchF5S0lJCxdttu7UpZggtI0S1lLW1-whtqJJd0w8Df4w2taOaTvDhCD0rZUsI4V0vn6IjOjBKCRs26Oe3xcTZO2_N7FPEyeEpmLLzI_5wcYJtmjwU7COerwDHxQZYCjZuhoyDn9IU4AabOOIphdu_jzmbWBzYvdpz9MSZUODFWo_Rj08fv5-eNedfP385PTlvLB_Y3FAneyGUdKpWAtxxKYVxvWW9NEaCGx0wai-FkQzIoJyQI6FmZIJYKbquO0bvDrrTcrmD0UKsLoKest-ZfKuT8fr-T_RX-le61kwKXu9QBd6sAjn9XqDMeueLhRBMhLQULSRRHeHkQZBVaJC9qiA_gDanUjK4OzeU6H2AeqvXAPU-QE2Zrt069-r_Vf5NrYlV4PUKmGJNcPXc1pc7jtFOCSr2Tt8fOKiHv_aQdbEeooXR55qOHpN_wMof2Fa-CA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20509748</pqid></control><display><type>article</type><title>Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection</title><source>MEDLINE</source><source>ScienceDirect Journals (5 years ago - present)</source><creator>Cohen, Richard N. ; van der Aa, Marieke A.E.M. ; Macaraeg, Nichole ; Lee, Ai Ping ; Szoka, Francis C.</creator><creatorcontrib>Cohen, Richard N. ; van der Aa, Marieke A.E.M. ; Macaraeg, Nichole ; Lee, Ai Ping ; Szoka, Francis C.</creatorcontrib><description>Nuclear uptake of plasmid DNA is one of the many cellular barriers that limit the efficiency of non-viral gene delivery systems. We have determined the number of plasmids that reach the nucleus of a transfected cell using an internally standardized quantitative PCR (qPCR) assay. We isolated nuclei using two different protocols: a density gradient technique and a detergent-based method. The density gradient procedure yielded nuclei with substantially less adhering plasmids on the outside of the nuclei. Using the density gradient protocol we determined that cells transfected with Lipofectamine™ lipoplexes or polyethylenimine polyplexes contained between 75 and 50,000 plasmids/nucleus, depending on the applied plasmid dose. Any increase above 3000 plasmids/nucleus resulted in only marginal increases in transgene expression. Furthermore, lipoplex-delivered plasmids were more efficiently expressed, on the basis of protein expression per plasmid number in the nucleus, than polyplex-delivered plasmids. This indicates that polymer may remain bound to some plasmids in the nucleus. Lastly, by sorting transfected cells into high- and low-expressing sub-populations, we observe that a sub-population of cells contain 3× greater plasmids/nucleus but express nearly 100× more transgene than other cells within a single transfection reaction. Taken together these results suggest the importance of considering the processes downstream from nuclear entry for strategies to improve the efficiency of gene transfer reagents. An improved nuclear isolation procedure and a quantitative internally standardized PCR assay allow for the quantification of plasmid delivery to the nucleus by two commonly used cell transfection reagents. [Display omitted]</description><identifier>ISSN: 0168-3659</identifier><identifier>EISSN: 1873-4995</identifier><identifier>DOI: 10.1016/j.jconrel.2008.12.016</identifier><identifier>PMID: 19211029</identifier><identifier>CODEN: JCREEC</identifier><language>eng</language><publisher>Kidlington: Elsevier B.V</publisher><subject>Animals ; Biological and medical sciences ; Biological Transport, Active ; Carcinoma - pathology ; Cell Fractionation ; Cell Line, Tumor ; Cell Nucleus - genetics ; Cell Nucleus - metabolism ; Contrast Media - chemistry ; Detergents - chemistry ; DNA - genetics ; DNA - isolation &amp; purification ; Drug delivery ; Gene Expression ; Gene therapy ; Gene Transfer Techniques ; General pharmacology ; Genetic Therapy ; Genetic Vectors ; Humans ; Intracellular trafficking ; Iodixanol ; Luciferases - metabolism ; Lung Neoplasms - pathology ; Medical sciences ; Melanoma, Experimental - pathology ; Mice ; Molecular Weight ; Nucleic Acid Amplification Techniques ; Pharmaceutical technology. Pharmaceutical industry ; Pharmacology. Drug treatments ; Plasmids - genetics ; Plasmids - metabolism ; Polyethyleneimine - chemistry ; Polymerase Chain Reaction - standards ; Time Factors ; Transfection ; Transgenes ; Triiodobenzoic Acids - chemistry</subject><ispartof>Journal of controlled release, 2009-04, Vol.135 (2), p.166-174</ispartof><rights>2009 Elsevier B.V.</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c592t-1f746687f87460e5f5776af4c247aa7efdfe21cb6a72e098f67d01ad260c76333</citedby><cites>FETCH-LOGICAL-c592t-1f746687f87460e5f5776af4c247aa7efdfe21cb6a72e098f67d01ad260c76333</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.jconrel.2008.12.016$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,780,784,885,3548,27923,27924,45994</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21386160$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19211029$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Cohen, Richard N.</creatorcontrib><creatorcontrib>van der Aa, Marieke A.E.M.</creatorcontrib><creatorcontrib>Macaraeg, Nichole</creatorcontrib><creatorcontrib>Lee, Ai Ping</creatorcontrib><creatorcontrib>Szoka, Francis C.</creatorcontrib><title>Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection</title><title>Journal of controlled release</title><addtitle>J Control Release</addtitle><description>Nuclear uptake of plasmid DNA is one of the many cellular barriers that limit the efficiency of non-viral gene delivery systems. We have determined the number of plasmids that reach the nucleus of a transfected cell using an internally standardized quantitative PCR (qPCR) assay. We isolated nuclei using two different protocols: a density gradient technique and a detergent-based method. The density gradient procedure yielded nuclei with substantially less adhering plasmids on the outside of the nuclei. Using the density gradient protocol we determined that cells transfected with Lipofectamine™ lipoplexes or polyethylenimine polyplexes contained between 75 and 50,000 plasmids/nucleus, depending on the applied plasmid dose. Any increase above 3000 plasmids/nucleus resulted in only marginal increases in transgene expression. Furthermore, lipoplex-delivered plasmids were more efficiently expressed, on the basis of protein expression per plasmid number in the nucleus, than polyplex-delivered plasmids. This indicates that polymer may remain bound to some plasmids in the nucleus. Lastly, by sorting transfected cells into high- and low-expressing sub-populations, we observe that a sub-population of cells contain 3× greater plasmids/nucleus but express nearly 100× more transgene than other cells within a single transfection reaction. Taken together these results suggest the importance of considering the processes downstream from nuclear entry for strategies to improve the efficiency of gene transfer reagents. An improved nuclear isolation procedure and a quantitative internally standardized PCR assay allow for the quantification of plasmid delivery to the nucleus by two commonly used cell transfection reagents. [Display omitted]</description><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Biological Transport, Active</subject><subject>Carcinoma - pathology</subject><subject>Cell Fractionation</subject><subject>Cell Line, Tumor</subject><subject>Cell Nucleus - genetics</subject><subject>Cell Nucleus - metabolism</subject><subject>Contrast Media - chemistry</subject><subject>Detergents - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - isolation &amp; purification</subject><subject>Drug delivery</subject><subject>Gene Expression</subject><subject>Gene therapy</subject><subject>Gene Transfer Techniques</subject><subject>General pharmacology</subject><subject>Genetic Therapy</subject><subject>Genetic Vectors</subject><subject>Humans</subject><subject>Intracellular trafficking</subject><subject>Iodixanol</subject><subject>Luciferases - metabolism</subject><subject>Lung Neoplasms - pathology</subject><subject>Medical sciences</subject><subject>Melanoma, Experimental - pathology</subject><subject>Mice</subject><subject>Molecular Weight</subject><subject>Nucleic Acid Amplification Techniques</subject><subject>Pharmaceutical technology. Pharmaceutical industry</subject><subject>Pharmacology. Drug treatments</subject><subject>Plasmids - genetics</subject><subject>Plasmids - metabolism</subject><subject>Polyethyleneimine - chemistry</subject><subject>Polymerase Chain Reaction - standards</subject><subject>Time Factors</subject><subject>Transfection</subject><subject>Transgenes</subject><subject>Triiodobenzoic Acids - chemistry</subject><issn>0168-3659</issn><issn>1873-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkUtv1TAQhS0EopfCTwB5A7sE24kf2YCq8ihSVYQEOyTLdcbUV752sJOq_ff4cqNCV12NPP7m6MwchF5S0lJCxdttu7UpZggtI0S1lLW1-whtqJJd0w8Df4w2taOaTvDhCD0rZUsI4V0vn6IjOjBKCRs26Oe3xcTZO2_N7FPEyeEpmLLzI_5wcYJtmjwU7COerwDHxQZYCjZuhoyDn9IU4AabOOIphdu_jzmbWBzYvdpz9MSZUODFWo_Rj08fv5-eNedfP385PTlvLB_Y3FAneyGUdKpWAtxxKYVxvWW9NEaCGx0wai-FkQzIoJyQI6FmZIJYKbquO0bvDrrTcrmD0UKsLoKest-ZfKuT8fr-T_RX-le61kwKXu9QBd6sAjn9XqDMeueLhRBMhLQULSRRHeHkQZBVaJC9qiA_gDanUjK4OzeU6H2AeqvXAPU-QE2Zrt069-r_Vf5NrYlV4PUKmGJNcPXc1pc7jtFOCSr2Tt8fOKiHv_aQdbEeooXR55qOHpN_wMof2Fa-CA</recordid><startdate>20090417</startdate><enddate>20090417</enddate><creator>Cohen, Richard N.</creator><creator>van der Aa, Marieke A.E.M.</creator><creator>Macaraeg, Nichole</creator><creator>Lee, Ai Ping</creator><creator>Szoka, Francis C.</creator><general>Elsevier B.V</general><general>Elsevier</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090417</creationdate><title>Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection</title><author>Cohen, Richard N. ; van der Aa, Marieke A.E.M. ; Macaraeg, Nichole ; Lee, Ai Ping ; Szoka, Francis C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c592t-1f746687f87460e5f5776af4c247aa7efdfe21cb6a72e098f67d01ad260c76333</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Biological Transport, Active</topic><topic>Carcinoma - pathology</topic><topic>Cell Fractionation</topic><topic>Cell Line, Tumor</topic><topic>Cell Nucleus - genetics</topic><topic>Cell Nucleus - metabolism</topic><topic>Contrast Media - chemistry</topic><topic>Detergents - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - isolation &amp; purification</topic><topic>Drug delivery</topic><topic>Gene Expression</topic><topic>Gene therapy</topic><topic>Gene Transfer Techniques</topic><topic>General pharmacology</topic><topic>Genetic Therapy</topic><topic>Genetic Vectors</topic><topic>Humans</topic><topic>Intracellular trafficking</topic><topic>Iodixanol</topic><topic>Luciferases - metabolism</topic><topic>Lung Neoplasms - pathology</topic><topic>Medical sciences</topic><topic>Melanoma, Experimental - pathology</topic><topic>Mice</topic><topic>Molecular Weight</topic><topic>Nucleic Acid Amplification Techniques</topic><topic>Pharmaceutical technology. Pharmaceutical industry</topic><topic>Pharmacology. Drug treatments</topic><topic>Plasmids - genetics</topic><topic>Plasmids - metabolism</topic><topic>Polyethyleneimine - chemistry</topic><topic>Polymerase Chain Reaction - standards</topic><topic>Time Factors</topic><topic>Transfection</topic><topic>Transgenes</topic><topic>Triiodobenzoic Acids - chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Cohen, Richard N.</creatorcontrib><creatorcontrib>van der Aa, Marieke A.E.M.</creatorcontrib><creatorcontrib>Macaraeg, Nichole</creatorcontrib><creatorcontrib>Lee, Ai Ping</creatorcontrib><creatorcontrib>Szoka, Francis C.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of controlled release</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Cohen, Richard N.</au><au>van der Aa, Marieke A.E.M.</au><au>Macaraeg, Nichole</au><au>Lee, Ai Ping</au><au>Szoka, Francis C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection</atitle><jtitle>Journal of controlled release</jtitle><addtitle>J Control Release</addtitle><date>2009-04-17</date><risdate>2009</risdate><volume>135</volume><issue>2</issue><spage>166</spage><epage>174</epage><pages>166-174</pages><issn>0168-3659</issn><eissn>1873-4995</eissn><coden>JCREEC</coden><abstract>Nuclear uptake of plasmid DNA is one of the many cellular barriers that limit the efficiency of non-viral gene delivery systems. We have determined the number of plasmids that reach the nucleus of a transfected cell using an internally standardized quantitative PCR (qPCR) assay. We isolated nuclei using two different protocols: a density gradient technique and a detergent-based method. The density gradient procedure yielded nuclei with substantially less adhering plasmids on the outside of the nuclei. Using the density gradient protocol we determined that cells transfected with Lipofectamine™ lipoplexes or polyethylenimine polyplexes contained between 75 and 50,000 plasmids/nucleus, depending on the applied plasmid dose. Any increase above 3000 plasmids/nucleus resulted in only marginal increases in transgene expression. Furthermore, lipoplex-delivered plasmids were more efficiently expressed, on the basis of protein expression per plasmid number in the nucleus, than polyplex-delivered plasmids. This indicates that polymer may remain bound to some plasmids in the nucleus. Lastly, by sorting transfected cells into high- and low-expressing sub-populations, we observe that a sub-population of cells contain 3× greater plasmids/nucleus but express nearly 100× more transgene than other cells within a single transfection reaction. Taken together these results suggest the importance of considering the processes downstream from nuclear entry for strategies to improve the efficiency of gene transfer reagents. An improved nuclear isolation procedure and a quantitative internally standardized PCR assay allow for the quantification of plasmid delivery to the nucleus by two commonly used cell transfection reagents. [Display omitted]</abstract><cop>Kidlington</cop><pub>Elsevier B.V</pub><pmid>19211029</pmid><doi>10.1016/j.jconrel.2008.12.016</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0168-3659
ispartof Journal of controlled release, 2009-04, Vol.135 (2), p.166-174
issn 0168-3659
1873-4995
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2765102
source MEDLINE; ScienceDirect Journals (5 years ago - present)
subjects Animals
Biological and medical sciences
Biological Transport, Active
Carcinoma - pathology
Cell Fractionation
Cell Line, Tumor
Cell Nucleus - genetics
Cell Nucleus - metabolism
Contrast Media - chemistry
Detergents - chemistry
DNA - genetics
DNA - isolation & purification
Drug delivery
Gene Expression
Gene therapy
Gene Transfer Techniques
General pharmacology
Genetic Therapy
Genetic Vectors
Humans
Intracellular trafficking
Iodixanol
Luciferases - metabolism
Lung Neoplasms - pathology
Medical sciences
Melanoma, Experimental - pathology
Mice
Molecular Weight
Nucleic Acid Amplification Techniques
Pharmaceutical technology. Pharmaceutical industry
Pharmacology. Drug treatments
Plasmids - genetics
Plasmids - metabolism
Polyethyleneimine - chemistry
Polymerase Chain Reaction - standards
Time Factors
Transfection
Transgenes
Triiodobenzoic Acids - chemistry
title Quantification of plasmid DNA copies in the nucleus after lipoplex and polyplex transfection
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T01%3A00%3A44IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Quantification%20of%20plasmid%20DNA%20copies%20in%20the%20nucleus%20after%20lipoplex%20and%20polyplex%20transfection&rft.jtitle=Journal%20of%20controlled%20release&rft.au=Cohen,%20Richard%20N.&rft.date=2009-04-17&rft.volume=135&rft.issue=2&rft.spage=166&rft.epage=174&rft.pages=166-174&rft.issn=0168-3659&rft.eissn=1873-4995&rft.coden=JCREEC&rft_id=info:doi/10.1016/j.jconrel.2008.12.016&rft_dat=%3Cproquest_pubme%3E67083050%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20509748&rft_id=info:pmid/19211029&rft_els_id=S0168365909000236&rfr_iscdi=true