Toward Digital Staining using Imaging Mass Spectrometry and Random Forests

We show on imaging mass spectrometry (IMS) data that the Random Forest classifier can be used for automated tissue classification and that it results in predictions with high sensitivities and positive predictive values, even when intersample variability is present in the data. We further demonstrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2009-07, Vol.8 (7), p.3558-3567
Hauptverfasser: Hanselmann, Michael, Köthe, Ullrich, Kirchner, Marc, Renard, Bernhard Y, Amstalden, Erika R, Glunde, Kristine, Heeren, Ron M. A, Hamprecht, Fred A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 3567
container_issue 7
container_start_page 3558
container_title Journal of proteome research
container_volume 8
creator Hanselmann, Michael
Köthe, Ullrich
Kirchner, Marc
Renard, Bernhard Y
Amstalden, Erika R
Glunde, Kristine
Heeren, Ron M. A
Hamprecht, Fred A
description We show on imaging mass spectrometry (IMS) data that the Random Forest classifier can be used for automated tissue classification and that it results in predictions with high sensitivities and positive predictive values, even when intersample variability is present in the data. We further demonstrate how Markov Random Fields and vector-valued median filtering can be applied to reduce noise effects to further improve the classification results in a posthoc smoothing step. Our study gives clear evidence that digital staining by means of IMS constitutes a promising complement to chemical staining techniques.
doi_str_mv 10.1021/pr900253y
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2763415</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67455733</sourcerecordid><originalsourceid>FETCH-LOGICAL-a403t-f5a575b9d567a5001626d7d6e53586215d21abb6fbb1309c0c1a847409d0cb503</originalsourceid><addsrcrecordid>eNptkNFKwzAUhoMoTqcXvoD0RsGLatI0yXIjyHQ6mQhuXofTNq0dbTOTVtnbm7E5Fbw5J3A-_vx8CJ0QfElwRK4WVmIcMbrcQQeEURZSicXu93sgaQ8dOjfHmDCB6T7qERlzyRg7QI8z8wk2C27LomyhCqYtlE3ZFEHnVnNcQ7HaT-BcMF3otLWm1q1dBtBkwYsfpg5GxmrXuiO0l0Pl9PFm99Hr6G42fAgnz_fj4c0khBjTNswZMMESmTEugPlOPOKZyLj2ZQc8IiyLCCQJz5OEUCxTnBIYxCLGMsNpwjDto-t17qJLap2lumktVGphyxrsUhko1d9LU76pwnyoSHAaeyd9dL4JsOa989VVXbpUVxU02nROcREzJij14MUaTK1xzup8-wnBamVebc179vR3qx9yo9oDZ2sAUqfmprONl_RP0BedHosj</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67455733</pqid></control><display><type>article</type><title>Toward Digital Staining using Imaging Mass Spectrometry and Random Forests</title><source>MEDLINE</source><source>American Chemical Society Journals</source><creator>Hanselmann, Michael ; Köthe, Ullrich ; Kirchner, Marc ; Renard, Bernhard Y ; Amstalden, Erika R ; Glunde, Kristine ; Heeren, Ron M. A ; Hamprecht, Fred A</creator><creatorcontrib>Hanselmann, Michael ; Köthe, Ullrich ; Kirchner, Marc ; Renard, Bernhard Y ; Amstalden, Erika R ; Glunde, Kristine ; Heeren, Ron M. A ; Hamprecht, Fred A</creatorcontrib><description>We show on imaging mass spectrometry (IMS) data that the Random Forest classifier can be used for automated tissue classification and that it results in predictions with high sensitivities and positive predictive values, even when intersample variability is present in the data. We further demonstrate how Markov Random Fields and vector-valued median filtering can be applied to reduce noise effects to further improve the classification results in a posthoc smoothing step. Our study gives clear evidence that digital staining by means of IMS constitutes a promising complement to chemical staining techniques.</description><identifier>ISSN: 1535-3893</identifier><identifier>EISSN: 1535-3907</identifier><identifier>DOI: 10.1021/pr900253y</identifier><identifier>PMID: 19469555</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>Algorithms ; Computational Biology - methods ; Data Interpretation, Statistical ; Gene Expression Profiling - methods ; Humans ; Image Processing, Computer-Assisted ; Markov Chains ; Mass Spectrometry - methods ; Models, Statistical ; Neoplasms - pathology ; Oligonucleotide Array Sequence Analysis - methods ; Pattern Recognition, Automated ; Proteomics - methods ; Software</subject><ispartof>Journal of proteome research, 2009-07, Vol.8 (7), p.3558-3567</ispartof><rights>Copyright © 2009 American Chemical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a403t-f5a575b9d567a5001626d7d6e53586215d21abb6fbb1309c0c1a847409d0cb503</citedby><cites>FETCH-LOGICAL-a403t-f5a575b9d567a5001626d7d6e53586215d21abb6fbb1309c0c1a847409d0cb503</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://pubs.acs.org/doi/pdf/10.1021/pr900253y$$EPDF$$P50$$Gacs$$H</linktopdf><linktohtml>$$Uhttps://pubs.acs.org/doi/10.1021/pr900253y$$EHTML$$P50$$Gacs$$H</linktohtml><link.rule.ids>230,314,780,784,885,2765,27076,27924,27925,56738,56788</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19469555$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Hanselmann, Michael</creatorcontrib><creatorcontrib>Köthe, Ullrich</creatorcontrib><creatorcontrib>Kirchner, Marc</creatorcontrib><creatorcontrib>Renard, Bernhard Y</creatorcontrib><creatorcontrib>Amstalden, Erika R</creatorcontrib><creatorcontrib>Glunde, Kristine</creatorcontrib><creatorcontrib>Heeren, Ron M. A</creatorcontrib><creatorcontrib>Hamprecht, Fred A</creatorcontrib><title>Toward Digital Staining using Imaging Mass Spectrometry and Random Forests</title><title>Journal of proteome research</title><addtitle>J. Proteome Res</addtitle><description>We show on imaging mass spectrometry (IMS) data that the Random Forest classifier can be used for automated tissue classification and that it results in predictions with high sensitivities and positive predictive values, even when intersample variability is present in the data. We further demonstrate how Markov Random Fields and vector-valued median filtering can be applied to reduce noise effects to further improve the classification results in a posthoc smoothing step. Our study gives clear evidence that digital staining by means of IMS constitutes a promising complement to chemical staining techniques.</description><subject>Algorithms</subject><subject>Computational Biology - methods</subject><subject>Data Interpretation, Statistical</subject><subject>Gene Expression Profiling - methods</subject><subject>Humans</subject><subject>Image Processing, Computer-Assisted</subject><subject>Markov Chains</subject><subject>Mass Spectrometry - methods</subject><subject>Models, Statistical</subject><subject>Neoplasms - pathology</subject><subject>Oligonucleotide Array Sequence Analysis - methods</subject><subject>Pattern Recognition, Automated</subject><subject>Proteomics - methods</subject><subject>Software</subject><issn>1535-3893</issn><issn>1535-3907</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNptkNFKwzAUhoMoTqcXvoD0RsGLatI0yXIjyHQ6mQhuXofTNq0dbTOTVtnbm7E5Fbw5J3A-_vx8CJ0QfElwRK4WVmIcMbrcQQeEURZSicXu93sgaQ8dOjfHmDCB6T7qERlzyRg7QI8z8wk2C27LomyhCqYtlE3ZFEHnVnNcQ7HaT-BcMF3otLWm1q1dBtBkwYsfpg5GxmrXuiO0l0Pl9PFm99Hr6G42fAgnz_fj4c0khBjTNswZMMESmTEugPlOPOKZyLj2ZQc8IiyLCCQJz5OEUCxTnBIYxCLGMsNpwjDto-t17qJLap2lumktVGphyxrsUhko1d9LU76pwnyoSHAaeyd9dL4JsOa989VVXbpUVxU02nROcREzJij14MUaTK1xzup8-wnBamVebc179vR3qx9yo9oDZ2sAUqfmprONl_RP0BedHosj</recordid><startdate>20090701</startdate><enddate>20090701</enddate><creator>Hanselmann, Michael</creator><creator>Köthe, Ullrich</creator><creator>Kirchner, Marc</creator><creator>Renard, Bernhard Y</creator><creator>Amstalden, Erika R</creator><creator>Glunde, Kristine</creator><creator>Heeren, Ron M. A</creator><creator>Hamprecht, Fred A</creator><general>American Chemical Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090701</creationdate><title>Toward Digital Staining using Imaging Mass Spectrometry and Random Forests</title><author>Hanselmann, Michael ; Köthe, Ullrich ; Kirchner, Marc ; Renard, Bernhard Y ; Amstalden, Erika R ; Glunde, Kristine ; Heeren, Ron M. A ; Hamprecht, Fred A</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a403t-f5a575b9d567a5001626d7d6e53586215d21abb6fbb1309c0c1a847409d0cb503</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Algorithms</topic><topic>Computational Biology - methods</topic><topic>Data Interpretation, Statistical</topic><topic>Gene Expression Profiling - methods</topic><topic>Humans</topic><topic>Image Processing, Computer-Assisted</topic><topic>Markov Chains</topic><topic>Mass Spectrometry - methods</topic><topic>Models, Statistical</topic><topic>Neoplasms - pathology</topic><topic>Oligonucleotide Array Sequence Analysis - methods</topic><topic>Pattern Recognition, Automated</topic><topic>Proteomics - methods</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Hanselmann, Michael</creatorcontrib><creatorcontrib>Köthe, Ullrich</creatorcontrib><creatorcontrib>Kirchner, Marc</creatorcontrib><creatorcontrib>Renard, Bernhard Y</creatorcontrib><creatorcontrib>Amstalden, Erika R</creatorcontrib><creatorcontrib>Glunde, Kristine</creatorcontrib><creatorcontrib>Heeren, Ron M. A</creatorcontrib><creatorcontrib>Hamprecht, Fred A</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of proteome research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Hanselmann, Michael</au><au>Köthe, Ullrich</au><au>Kirchner, Marc</au><au>Renard, Bernhard Y</au><au>Amstalden, Erika R</au><au>Glunde, Kristine</au><au>Heeren, Ron M. A</au><au>Hamprecht, Fred A</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Toward Digital Staining using Imaging Mass Spectrometry and Random Forests</atitle><jtitle>Journal of proteome research</jtitle><addtitle>J. Proteome Res</addtitle><date>2009-07-01</date><risdate>2009</risdate><volume>8</volume><issue>7</issue><spage>3558</spage><epage>3567</epage><pages>3558-3567</pages><issn>1535-3893</issn><eissn>1535-3907</eissn><abstract>We show on imaging mass spectrometry (IMS) data that the Random Forest classifier can be used for automated tissue classification and that it results in predictions with high sensitivities and positive predictive values, even when intersample variability is present in the data. We further demonstrate how Markov Random Fields and vector-valued median filtering can be applied to reduce noise effects to further improve the classification results in a posthoc smoothing step. Our study gives clear evidence that digital staining by means of IMS constitutes a promising complement to chemical staining techniques.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>19469555</pmid><doi>10.1021/pr900253y</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1535-3893
ispartof Journal of proteome research, 2009-07, Vol.8 (7), p.3558-3567
issn 1535-3893
1535-3907
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2763415
source MEDLINE; American Chemical Society Journals
subjects Algorithms
Computational Biology - methods
Data Interpretation, Statistical
Gene Expression Profiling - methods
Humans
Image Processing, Computer-Assisted
Markov Chains
Mass Spectrometry - methods
Models, Statistical
Neoplasms - pathology
Oligonucleotide Array Sequence Analysis - methods
Pattern Recognition, Automated
Proteomics - methods
Software
title Toward Digital Staining using Imaging Mass Spectrometry and Random Forests
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-24T13%3A42%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Toward%20Digital%20Staining%20using%20Imaging%20Mass%20Spectrometry%20and%20Random%20Forests&rft.jtitle=Journal%20of%20proteome%20research&rft.au=Hanselmann,%20Michael&rft.date=2009-07-01&rft.volume=8&rft.issue=7&rft.spage=3558&rft.epage=3567&rft.pages=3558-3567&rft.issn=1535-3893&rft.eissn=1535-3907&rft_id=info:doi/10.1021/pr900253y&rft_dat=%3Cproquest_pubme%3E67455733%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67455733&rft_id=info:pmid/19469555&rfr_iscdi=true