Toward Digital Staining using Imaging Mass Spectrometry and Random Forests

We show on imaging mass spectrometry (IMS) data that the Random Forest classifier can be used for automated tissue classification and that it results in predictions with high sensitivities and positive predictive values, even when intersample variability is present in the data. We further demonstrat...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of proteome research 2009-07, Vol.8 (7), p.3558-3567
Hauptverfasser: Hanselmann, Michael, Köthe, Ullrich, Kirchner, Marc, Renard, Bernhard Y, Amstalden, Erika R, Glunde, Kristine, Heeren, Ron M. A, Hamprecht, Fred A
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:We show on imaging mass spectrometry (IMS) data that the Random Forest classifier can be used for automated tissue classification and that it results in predictions with high sensitivities and positive predictive values, even when intersample variability is present in the data. We further demonstrate how Markov Random Fields and vector-valued median filtering can be applied to reduce noise effects to further improve the classification results in a posthoc smoothing step. Our study gives clear evidence that digital staining by means of IMS constitutes a promising complement to chemical staining techniques.
ISSN:1535-3893
1535-3907
DOI:10.1021/pr900253y