Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach

Previous studies have used different methods in an effort to extract the modular organization of transcriptional regulatory networks. However, these approaches are not natural, as they try to cluster strongly connected genes into a module or locate known pleiotropic transcription factors in lower hi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Genome Biology (Online Edition) 2008-10, Vol.9 (10), p.R154-R154, Article R154
Hauptverfasser: Freyre-González, Julio A, Alonso-Pavón, José A, Treviño-Quintanilla, Luis G, Collado-Vides, Julio
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page R154
container_issue 10
container_start_page R154
container_title Genome Biology (Online Edition)
container_volume 9
creator Freyre-González, Julio A
Alonso-Pavón, José A
Treviño-Quintanilla, Luis G
Collado-Vides, Julio
description Previous studies have used different methods in an effort to extract the modular organization of transcriptional regulatory networks. However, these approaches are not natural, as they try to cluster strongly connected genes into a module or locate known pleiotropic transcription factors in lower hierarchical layers. Here, we unravel the transcriptional regulatory network of Escherichia coli by separating it into its key elements, thus revealing its natural organization. We also present a mathematical criterion, based on the topological features of the transcriptional regulatory network, to classify the network elements into one of two possible classes: hierarchical or modular genes. We found that modular genes are clustered into physiologically correlated groups validated by a statistical analysis of the enrichment of the functional classes. Hierarchical genes encode transcription factors responsible for coordinating module responses based on general interest signals. Hierarchical elements correlate highly with the previously studied global regulators, suggesting that this could be the first mathematical method to identify global regulators. We identified a new element in transcriptional regulatory networks never described before: intermodular genes. These are structural genes that integrate, at the promoter level, signals coming from different modules, and therefore from different physiological responses. Using the concept of pleiotropy, we have reconstructed the hierarchy of the network and discuss the role of feedforward motifs in shaping the hierarchical backbone of the transcriptional regulatory network. This study sheds new light on the design principles underpinning the organization of transcriptional regulatory networks, showing a novel nonpyramidal architecture composed of independent modules globally governed by hierarchical transcription factors, whose responses are integrated by intermodular genes.
doi_str_mv 10.1186/gb-2008-9-10-r154
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2760881</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A603115977</galeid><sourcerecordid>A603115977</sourcerecordid><originalsourceid>FETCH-LOGICAL-c640t-7c84e70d3fbfbc411a892b943a59e4841ea5bb5394695d679bee8693a70c4e53</originalsourceid><addsrcrecordid>eNqNkj1v1TAYhSMEoqXwA1iQN8SQYseOPxiQqqqFikowdGCzbOdNYpTEwU5a-u9xdK_g3gnkwdbxOY-s16coXhN8Tojk7ztbVhjLUpUEl5HU7ElxSphgpeD4-9OD80nxIqUfGBPFKv68OCFS1Yxxelq01-vkFh8mMyATXe8XcMsaAYUWXSXXQ_RZNMiFwX9AEzwgPyXf9UtCcwz3voEG2Udk0GRyLEMacGGcQ_IbFJk5u4zrXxbPWjMkeLXfz4q766u7y8_l7ddPN5cXt6XjDC-lcJKBwA1tbWsdI8RIVVnFqKkVMMkImNramirGVd1woSyA5IoagR2Dmp4VH3fYebUjNA6mJb9Jz9GPJj7qYLw-vpl8r7twr6s8JSlJBrzdA2L4uUJa9OiTg2EwE4Q1aUGppFwJmZ3nO2dnBtB-akMGurwaGL0LE7Q-6xccU0JqJcT_BvLXyJyoqxx4dxTIngV-LZ1ZU9Jfvt0cw__lPeSSndfFkFKE9s98CNZbr3Rn9dYrrTZl61XOvDkc7N_Evkj0N4Ynyi4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>733836978</pqid></control><display><type>article</type><title>Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach</title><source>PubMed Central Free</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Springer Nature OA Free Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>SpringerLink Journals - AutoHoldings</source><creator>Freyre-González, Julio A ; Alonso-Pavón, José A ; Treviño-Quintanilla, Luis G ; Collado-Vides, Julio</creator><creatorcontrib>Freyre-González, Julio A ; Alonso-Pavón, José A ; Treviño-Quintanilla, Luis G ; Collado-Vides, Julio</creatorcontrib><description>Previous studies have used different methods in an effort to extract the modular organization of transcriptional regulatory networks. However, these approaches are not natural, as they try to cluster strongly connected genes into a module or locate known pleiotropic transcription factors in lower hierarchical layers. Here, we unravel the transcriptional regulatory network of Escherichia coli by separating it into its key elements, thus revealing its natural organization. We also present a mathematical criterion, based on the topological features of the transcriptional regulatory network, to classify the network elements into one of two possible classes: hierarchical or modular genes. We found that modular genes are clustered into physiologically correlated groups validated by a statistical analysis of the enrichment of the functional classes. Hierarchical genes encode transcription factors responsible for coordinating module responses based on general interest signals. Hierarchical elements correlate highly with the previously studied global regulators, suggesting that this could be the first mathematical method to identify global regulators. We identified a new element in transcriptional regulatory networks never described before: intermodular genes. These are structural genes that integrate, at the promoter level, signals coming from different modules, and therefore from different physiological responses. Using the concept of pleiotropy, we have reconstructed the hierarchy of the network and discuss the role of feedforward motifs in shaping the hierarchical backbone of the transcriptional regulatory network. This study sheds new light on the design principles underpinning the organization of transcriptional regulatory networks, showing a novel nonpyramidal architecture composed of independent modules globally governed by hierarchical transcription factors, whose responses are integrated by intermodular genes.</description><identifier>ISSN: 1474-760X</identifier><identifier>ISSN: 1465-6906</identifier><identifier>EISSN: 1474-760X</identifier><identifier>EISSN: 1465-6914</identifier><identifier>DOI: 10.1186/gb-2008-9-10-r154</identifier><identifier>PMID: 18954463</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Analysis ; Computational Biology - methods ; Databases, Genetic ; DNA binding proteins ; Escherichia coli ; Escherichia coli - genetics ; Escherichia coli Proteins - genetics ; Gene Expression Profiling ; Gene Regulatory Networks - genetics ; Genes ; Genes, Bacterial ; Genetic aspects ; Genetic research ; Genetic transcription ; Genome, Bacterial ; Health aspects ; Methods ; Novels ; Phosphates ; Physiological aspects ; Transcription (Genetics)</subject><ispartof>Genome Biology (Online Edition), 2008-10, Vol.9 (10), p.R154-R154, Article R154</ispartof><rights>COPYRIGHT 2008 BioMed Central Ltd.</rights><rights>Copyright © 2008 Freyre-González et al.; licensee BioMed Central Ltd. 2008 Freyre-González et al.; licensee BioMed Central Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c640t-7c84e70d3fbfbc411a892b943a59e4841ea5bb5394695d679bee8693a70c4e53</citedby><cites>FETCH-LOGICAL-c640t-7c84e70d3fbfbc411a892b943a59e4841ea5bb5394695d679bee8693a70c4e53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760881/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760881/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,864,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18954463$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Freyre-González, Julio A</creatorcontrib><creatorcontrib>Alonso-Pavón, José A</creatorcontrib><creatorcontrib>Treviño-Quintanilla, Luis G</creatorcontrib><creatorcontrib>Collado-Vides, Julio</creatorcontrib><title>Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach</title><title>Genome Biology (Online Edition)</title><addtitle>Genome Biol</addtitle><description>Previous studies have used different methods in an effort to extract the modular organization of transcriptional regulatory networks. However, these approaches are not natural, as they try to cluster strongly connected genes into a module or locate known pleiotropic transcription factors in lower hierarchical layers. Here, we unravel the transcriptional regulatory network of Escherichia coli by separating it into its key elements, thus revealing its natural organization. We also present a mathematical criterion, based on the topological features of the transcriptional regulatory network, to classify the network elements into one of two possible classes: hierarchical or modular genes. We found that modular genes are clustered into physiologically correlated groups validated by a statistical analysis of the enrichment of the functional classes. Hierarchical genes encode transcription factors responsible for coordinating module responses based on general interest signals. Hierarchical elements correlate highly with the previously studied global regulators, suggesting that this could be the first mathematical method to identify global regulators. We identified a new element in transcriptional regulatory networks never described before: intermodular genes. These are structural genes that integrate, at the promoter level, signals coming from different modules, and therefore from different physiological responses. Using the concept of pleiotropy, we have reconstructed the hierarchy of the network and discuss the role of feedforward motifs in shaping the hierarchical backbone of the transcriptional regulatory network. This study sheds new light on the design principles underpinning the organization of transcriptional regulatory networks, showing a novel nonpyramidal architecture composed of independent modules globally governed by hierarchical transcription factors, whose responses are integrated by intermodular genes.</description><subject>Analysis</subject><subject>Computational Biology - methods</subject><subject>Databases, Genetic</subject><subject>DNA binding proteins</subject><subject>Escherichia coli</subject><subject>Escherichia coli - genetics</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Gene Expression Profiling</subject><subject>Gene Regulatory Networks - genetics</subject><subject>Genes</subject><subject>Genes, Bacterial</subject><subject>Genetic aspects</subject><subject>Genetic research</subject><subject>Genetic transcription</subject><subject>Genome, Bacterial</subject><subject>Health aspects</subject><subject>Methods</subject><subject>Novels</subject><subject>Phosphates</subject><subject>Physiological aspects</subject><subject>Transcription (Genetics)</subject><issn>1474-760X</issn><issn>1465-6906</issn><issn>1474-760X</issn><issn>1465-6914</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>KPI</sourceid><recordid>eNqNkj1v1TAYhSMEoqXwA1iQN8SQYseOPxiQqqqFikowdGCzbOdNYpTEwU5a-u9xdK_g3gnkwdbxOY-s16coXhN8Tojk7ztbVhjLUpUEl5HU7ElxSphgpeD4-9OD80nxIqUfGBPFKv68OCFS1Yxxelq01-vkFh8mMyATXe8XcMsaAYUWXSXXQ_RZNMiFwX9AEzwgPyXf9UtCcwz3voEG2Udk0GRyLEMacGGcQ_IbFJk5u4zrXxbPWjMkeLXfz4q766u7y8_l7ddPN5cXt6XjDC-lcJKBwA1tbWsdI8RIVVnFqKkVMMkImNramirGVd1woSyA5IoagR2Dmp4VH3fYebUjNA6mJb9Jz9GPJj7qYLw-vpl8r7twr6s8JSlJBrzdA2L4uUJa9OiTg2EwE4Q1aUGppFwJmZ3nO2dnBtB-akMGurwaGL0LE7Q-6xccU0JqJcT_BvLXyJyoqxx4dxTIngV-LZ1ZU9Jfvt0cw__lPeSSndfFkFKE9s98CNZbr3Rn9dYrrTZl61XOvDkc7N_Evkj0N4Ynyi4</recordid><startdate>20081027</startdate><enddate>20081027</enddate><creator>Freyre-González, Julio A</creator><creator>Alonso-Pavón, José A</creator><creator>Treviño-Quintanilla, Luis G</creator><creator>Collado-Vides, Julio</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>KPI</scope><scope>IAO</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20081027</creationdate><title>Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach</title><author>Freyre-González, Julio A ; Alonso-Pavón, José A ; Treviño-Quintanilla, Luis G ; Collado-Vides, Julio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c640t-7c84e70d3fbfbc411a892b943a59e4841ea5bb5394695d679bee8693a70c4e53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Analysis</topic><topic>Computational Biology - methods</topic><topic>Databases, Genetic</topic><topic>DNA binding proteins</topic><topic>Escherichia coli</topic><topic>Escherichia coli - genetics</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Gene Expression Profiling</topic><topic>Gene Regulatory Networks - genetics</topic><topic>Genes</topic><topic>Genes, Bacterial</topic><topic>Genetic aspects</topic><topic>Genetic research</topic><topic>Genetic transcription</topic><topic>Genome, Bacterial</topic><topic>Health aspects</topic><topic>Methods</topic><topic>Novels</topic><topic>Phosphates</topic><topic>Physiological aspects</topic><topic>Transcription (Genetics)</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Freyre-González, Julio A</creatorcontrib><creatorcontrib>Alonso-Pavón, José A</creatorcontrib><creatorcontrib>Treviño-Quintanilla, Luis G</creatorcontrib><creatorcontrib>Collado-Vides, Julio</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Global Issues</collection><collection>Gale Academic OneFile</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genome Biology (Online Edition)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Freyre-González, Julio A</au><au>Alonso-Pavón, José A</au><au>Treviño-Quintanilla, Luis G</au><au>Collado-Vides, Julio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach</atitle><jtitle>Genome Biology (Online Edition)</jtitle><addtitle>Genome Biol</addtitle><date>2008-10-27</date><risdate>2008</risdate><volume>9</volume><issue>10</issue><spage>R154</spage><epage>R154</epage><pages>R154-R154</pages><artnum>R154</artnum><issn>1474-760X</issn><issn>1465-6906</issn><eissn>1474-760X</eissn><eissn>1465-6914</eissn><abstract>Previous studies have used different methods in an effort to extract the modular organization of transcriptional regulatory networks. However, these approaches are not natural, as they try to cluster strongly connected genes into a module or locate known pleiotropic transcription factors in lower hierarchical layers. Here, we unravel the transcriptional regulatory network of Escherichia coli by separating it into its key elements, thus revealing its natural organization. We also present a mathematical criterion, based on the topological features of the transcriptional regulatory network, to classify the network elements into one of two possible classes: hierarchical or modular genes. We found that modular genes are clustered into physiologically correlated groups validated by a statistical analysis of the enrichment of the functional classes. Hierarchical genes encode transcription factors responsible for coordinating module responses based on general interest signals. Hierarchical elements correlate highly with the previously studied global regulators, suggesting that this could be the first mathematical method to identify global regulators. We identified a new element in transcriptional regulatory networks never described before: intermodular genes. These are structural genes that integrate, at the promoter level, signals coming from different modules, and therefore from different physiological responses. Using the concept of pleiotropy, we have reconstructed the hierarchy of the network and discuss the role of feedforward motifs in shaping the hierarchical backbone of the transcriptional regulatory network. This study sheds new light on the design principles underpinning the organization of transcriptional regulatory networks, showing a novel nonpyramidal architecture composed of independent modules globally governed by hierarchical transcription factors, whose responses are integrated by intermodular genes.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>18954463</pmid><doi>10.1186/gb-2008-9-10-r154</doi><tpages>R154</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1474-760X
ispartof Genome Biology (Online Edition), 2008-10, Vol.9 (10), p.R154-R154, Article R154
issn 1474-760X
1465-6906
1474-760X
1465-6914
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2760881
source PubMed Central Free; MEDLINE; DOAJ Directory of Open Access Journals; Springer Nature OA Free Journals; EZB-FREE-00999 freely available EZB journals; SpringerLink Journals - AutoHoldings
subjects Analysis
Computational Biology - methods
Databases, Genetic
DNA binding proteins
Escherichia coli
Escherichia coli - genetics
Escherichia coli Proteins - genetics
Gene Expression Profiling
Gene Regulatory Networks - genetics
Genes
Genes, Bacterial
Genetic aspects
Genetic research
Genetic transcription
Genome, Bacterial
Health aspects
Methods
Novels
Phosphates
Physiological aspects
Transcription (Genetics)
title Functional architecture of Escherichia coli: new insights provided by a natural decomposition approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-03T07%3A07%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Functional%20architecture%20of%20Escherichia%20coli:%20new%20insights%20provided%20by%20a%20natural%20decomposition%20approach&rft.jtitle=Genome%20Biology%20(Online%20Edition)&rft.au=Freyre-Gonz%C3%A1lez,%20Julio%20A&rft.date=2008-10-27&rft.volume=9&rft.issue=10&rft.spage=R154&rft.epage=R154&rft.pages=R154-R154&rft.artnum=R154&rft.issn=1474-760X&rft.eissn=1474-760X&rft_id=info:doi/10.1186/gb-2008-9-10-r154&rft_dat=%3Cgale_pubme%3EA603115977%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=733836978&rft_id=info:pmid/18954463&rft_galeid=A603115977&rfr_iscdi=true