Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3

SIRT3 is a key mitochondrial protein deacetylase proposed to play key roles in regulating mitochondrial metabolism but there has been considerable debate about its actual size, the sequences required for activity, and its subcellular localization. A previously cloned mouse SIRT3 has high sequence si...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2009-03, Vol.18 (3), p.514-525
Hauptverfasser: Jin, Lei, Galonek, Heidi, Israelian, Kristine, Choy, Wendy, Morrison, Michael, Xia, Yu, Wang, Xiaohong, Xu, Yihua, Yang, Yuecheng, Smith, Jesse J., Hoffmann, Ethan, Carney, David P., Perni, Robert B., Jirousek, Michael R., Bemis, Jean E., Milne, Jill C., Sinclair, David A., Westphal, Christoph H.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 525
container_issue 3
container_start_page 514
container_title Protein science
container_volume 18
creator Jin, Lei
Galonek, Heidi
Israelian, Kristine
Choy, Wendy
Morrison, Michael
Xia, Yu
Wang, Xiaohong
Xu, Yihua
Yang, Yuecheng
Smith, Jesse J.
Hoffmann, Ethan
Carney, David P.
Perni, Robert B.
Jirousek, Michael R.
Bemis, Jean E.
Milne, Jill C.
Sinclair, David A.
Westphal, Christoph H.
description SIRT3 is a key mitochondrial protein deacetylase proposed to play key roles in regulating mitochondrial metabolism but there has been considerable debate about its actual size, the sequences required for activity, and its subcellular localization. A previously cloned mouse SIRT3 has high sequence similarity with the C‐terminus of human SIRT3 but lacks an N‐terminal mitochondrial targeting sequence and has no detectable deacetylation activity in vitro. Using 5′ rapid amplification of cDNA ends, we cloned the entire sequence of mouse SIRT3, as well as rat and rabbit SIRT3. Importantly, we find that full‐length SIRT3 protein localizes exclusively to the mitochondria, in contrast to reports of SIRT3 localization to the nucleus. We demonstrate that SIRT3 has no deacetylation activity in vitro unless the protein is truncated, consistent with human SIRT3. In addition, we determined the inhibition constants and mechanism of action for nicotinamide and a small molecule SIRT3 inhibitor against active mouse SIRT3 and show that the mechanisms are different for the two compounds with respect to peptide substrate and NAD+. Thus, identification and characterization of the actual SIRT3 sequence should help resolve the debate about the nature of mouse SIRT3 and identify new mechanisms to modulate enzymatic activity.
doi_str_mv 10.1002/pro.50
format Article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2760358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PRO50</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4640-c993a278457995ada0d35e08ca0cdf65b2a2a65f86bf0f7f5768739c1ba270043</originalsourceid><addsrcrecordid>eNp1kN9LwzAQgIMobk79EyRPgmBn0jRp8yLo8MdAmMwJvpU0TbZI24ykVeZfb8bG1Aefjrv77jvuADjFaIgRiq-Wzg4p2gN9nDAeZZy97YM-4gxHGWFZDxx5_44QSnBMDkEP8zjBhPE-ULfGyoWqjRQVlAvhhGyVM1-iNba5hJUN9V0mmhK2xvtOwdL41pmiWzeg1bBdqAA3c-Wgtq5el2rbeQVfxtMZOQYHWlRenWzjALze381Gj9HT5GE8unmKZMISFEnOiYjTLKEp51SUApWEKpRJgWSpGS1iEQtGdcYKjXSqacqylHCJizAVjiMDcL3xLruiVqVUTetElS-dqYVb5VaY_G-nMYt8bj_yOGWI0CwIzjcC6az3TundLEb5-tEhtzlFATz7vekH2342ABcb4NNUavWPJn-eToLsGz5JiOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3</title><source>Access via Wiley Online Library</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jin, Lei ; Galonek, Heidi ; Israelian, Kristine ; Choy, Wendy ; Morrison, Michael ; Xia, Yu ; Wang, Xiaohong ; Xu, Yihua ; Yang, Yuecheng ; Smith, Jesse J. ; Hoffmann, Ethan ; Carney, David P. ; Perni, Robert B. ; Jirousek, Michael R. ; Bemis, Jean E. ; Milne, Jill C. ; Sinclair, David A. ; Westphal, Christoph H.</creator><creatorcontrib>Jin, Lei ; Galonek, Heidi ; Israelian, Kristine ; Choy, Wendy ; Morrison, Michael ; Xia, Yu ; Wang, Xiaohong ; Xu, Yihua ; Yang, Yuecheng ; Smith, Jesse J. ; Hoffmann, Ethan ; Carney, David P. ; Perni, Robert B. ; Jirousek, Michael R. ; Bemis, Jean E. ; Milne, Jill C. ; Sinclair, David A. ; Westphal, Christoph H.</creatorcontrib><description>SIRT3 is a key mitochondrial protein deacetylase proposed to play key roles in regulating mitochondrial metabolism but there has been considerable debate about its actual size, the sequences required for activity, and its subcellular localization. A previously cloned mouse SIRT3 has high sequence similarity with the C‐terminus of human SIRT3 but lacks an N‐terminal mitochondrial targeting sequence and has no detectable deacetylation activity in vitro. Using 5′ rapid amplification of cDNA ends, we cloned the entire sequence of mouse SIRT3, as well as rat and rabbit SIRT3. Importantly, we find that full‐length SIRT3 protein localizes exclusively to the mitochondria, in contrast to reports of SIRT3 localization to the nucleus. We demonstrate that SIRT3 has no deacetylation activity in vitro unless the protein is truncated, consistent with human SIRT3. In addition, we determined the inhibition constants and mechanism of action for nicotinamide and a small molecule SIRT3 inhibitor against active mouse SIRT3 and show that the mechanisms are different for the two compounds with respect to peptide substrate and NAD+. Thus, identification and characterization of the actual SIRT3 sequence should help resolve the debate about the nature of mouse SIRT3 and identify new mechanisms to modulate enzymatic activity.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.50</identifier><identifier>PMID: 19241369</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Amino Acid Sequence ; Animals ; Base Sequence ; Cells, Cultured ; Cloning, Molecular ; Heterocyclic Compounds, 4 or More Rings - metabolism ; inhibitor ; Mice ; Mitochondria - metabolism ; mitochondrial function ; Mitochondrial Proteins - antagonists &amp; inhibitors ; Mitochondrial Proteins - chemistry ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Molecular Sequence Data ; NAD+‐dependent deacetylation ; Niacinamide - metabolism ; Protein Sorting Signals ; Rabbits ; Rats ; Recombinant Fusion Proteins - antagonists &amp; inhibitors ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Sequence Alignment ; sirtuin ; Sirtuin 3 ; Sirtuins - antagonists &amp; inhibitors ; Sirtuins - chemistry ; Sirtuins - genetics ; Sirtuins - metabolism ; Tissue Distribution - genetics</subject><ispartof>Protein science, 2009-03, Vol.18 (3), p.514-525</ispartof><rights>Copyright © 2009 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4640-c993a278457995ada0d35e08ca0cdf65b2a2a65f86bf0f7f5768739c1ba270043</citedby><cites>FETCH-LOGICAL-c4640-c993a278457995ada0d35e08ca0cdf65b2a2a65f86bf0f7f5768739c1ba270043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760358/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760358/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,1419,1435,27933,27934,45583,45584,46418,46842,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19241369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Lei</creatorcontrib><creatorcontrib>Galonek, Heidi</creatorcontrib><creatorcontrib>Israelian, Kristine</creatorcontrib><creatorcontrib>Choy, Wendy</creatorcontrib><creatorcontrib>Morrison, Michael</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Xu, Yihua</creatorcontrib><creatorcontrib>Yang, Yuecheng</creatorcontrib><creatorcontrib>Smith, Jesse J.</creatorcontrib><creatorcontrib>Hoffmann, Ethan</creatorcontrib><creatorcontrib>Carney, David P.</creatorcontrib><creatorcontrib>Perni, Robert B.</creatorcontrib><creatorcontrib>Jirousek, Michael R.</creatorcontrib><creatorcontrib>Bemis, Jean E.</creatorcontrib><creatorcontrib>Milne, Jill C.</creatorcontrib><creatorcontrib>Sinclair, David A.</creatorcontrib><creatorcontrib>Westphal, Christoph H.</creatorcontrib><title>Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>SIRT3 is a key mitochondrial protein deacetylase proposed to play key roles in regulating mitochondrial metabolism but there has been considerable debate about its actual size, the sequences required for activity, and its subcellular localization. A previously cloned mouse SIRT3 has high sequence similarity with the C‐terminus of human SIRT3 but lacks an N‐terminal mitochondrial targeting sequence and has no detectable deacetylation activity in vitro. Using 5′ rapid amplification of cDNA ends, we cloned the entire sequence of mouse SIRT3, as well as rat and rabbit SIRT3. Importantly, we find that full‐length SIRT3 protein localizes exclusively to the mitochondria, in contrast to reports of SIRT3 localization to the nucleus. We demonstrate that SIRT3 has no deacetylation activity in vitro unless the protein is truncated, consistent with human SIRT3. In addition, we determined the inhibition constants and mechanism of action for nicotinamide and a small molecule SIRT3 inhibitor against active mouse SIRT3 and show that the mechanisms are different for the two compounds with respect to peptide substrate and NAD+. Thus, identification and characterization of the actual SIRT3 sequence should help resolve the debate about the nature of mouse SIRT3 and identify new mechanisms to modulate enzymatic activity.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Cells, Cultured</subject><subject>Cloning, Molecular</subject><subject>Heterocyclic Compounds, 4 or More Rings - metabolism</subject><subject>inhibitor</subject><subject>Mice</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial function</subject><subject>Mitochondrial Proteins - antagonists &amp; inhibitors</subject><subject>Mitochondrial Proteins - chemistry</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Molecular Sequence Data</subject><subject>NAD+‐dependent deacetylation</subject><subject>Niacinamide - metabolism</subject><subject>Protein Sorting Signals</subject><subject>Rabbits</subject><subject>Rats</subject><subject>Recombinant Fusion Proteins - antagonists &amp; inhibitors</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>sirtuin</subject><subject>Sirtuin 3</subject><subject>Sirtuins - antagonists &amp; inhibitors</subject><subject>Sirtuins - chemistry</subject><subject>Sirtuins - genetics</subject><subject>Sirtuins - metabolism</subject><subject>Tissue Distribution - genetics</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kN9LwzAQgIMobk79EyRPgmBn0jRp8yLo8MdAmMwJvpU0TbZI24ykVeZfb8bG1Aefjrv77jvuADjFaIgRiq-Wzg4p2gN9nDAeZZy97YM-4gxHGWFZDxx5_44QSnBMDkEP8zjBhPE-ULfGyoWqjRQVlAvhhGyVM1-iNba5hJUN9V0mmhK2xvtOwdL41pmiWzeg1bBdqAA3c-Wgtq5el2rbeQVfxtMZOQYHWlRenWzjALze381Gj9HT5GE8unmKZMISFEnOiYjTLKEp51SUApWEKpRJgWSpGS1iEQtGdcYKjXSqacqylHCJizAVjiMDcL3xLruiVqVUTetElS-dqYVb5VaY_G-nMYt8bj_yOGWI0CwIzjcC6az3TundLEb5-tEhtzlFATz7vekH2342ABcb4NNUavWPJn-eToLsGz5JiOw</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Jin, Lei</creator><creator>Galonek, Heidi</creator><creator>Israelian, Kristine</creator><creator>Choy, Wendy</creator><creator>Morrison, Michael</creator><creator>Xia, Yu</creator><creator>Wang, Xiaohong</creator><creator>Xu, Yihua</creator><creator>Yang, Yuecheng</creator><creator>Smith, Jesse J.</creator><creator>Hoffmann, Ethan</creator><creator>Carney, David P.</creator><creator>Perni, Robert B.</creator><creator>Jirousek, Michael R.</creator><creator>Bemis, Jean E.</creator><creator>Milne, Jill C.</creator><creator>Sinclair, David A.</creator><creator>Westphal, Christoph H.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>200903</creationdate><title>Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3</title><author>Jin, Lei ; Galonek, Heidi ; Israelian, Kristine ; Choy, Wendy ; Morrison, Michael ; Xia, Yu ; Wang, Xiaohong ; Xu, Yihua ; Yang, Yuecheng ; Smith, Jesse J. ; Hoffmann, Ethan ; Carney, David P. ; Perni, Robert B. ; Jirousek, Michael R. ; Bemis, Jean E. ; Milne, Jill C. ; Sinclair, David A. ; Westphal, Christoph H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4640-c993a278457995ada0d35e08ca0cdf65b2a2a65f86bf0f7f5768739c1ba270043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Cells, Cultured</topic><topic>Cloning, Molecular</topic><topic>Heterocyclic Compounds, 4 or More Rings - metabolism</topic><topic>inhibitor</topic><topic>Mice</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial function</topic><topic>Mitochondrial Proteins - antagonists &amp; inhibitors</topic><topic>Mitochondrial Proteins - chemistry</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Molecular Sequence Data</topic><topic>NAD+‐dependent deacetylation</topic><topic>Niacinamide - metabolism</topic><topic>Protein Sorting Signals</topic><topic>Rabbits</topic><topic>Rats</topic><topic>Recombinant Fusion Proteins - antagonists &amp; inhibitors</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>sirtuin</topic><topic>Sirtuin 3</topic><topic>Sirtuins - antagonists &amp; inhibitors</topic><topic>Sirtuins - chemistry</topic><topic>Sirtuins - genetics</topic><topic>Sirtuins - metabolism</topic><topic>Tissue Distribution - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Lei</creatorcontrib><creatorcontrib>Galonek, Heidi</creatorcontrib><creatorcontrib>Israelian, Kristine</creatorcontrib><creatorcontrib>Choy, Wendy</creatorcontrib><creatorcontrib>Morrison, Michael</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Xu, Yihua</creatorcontrib><creatorcontrib>Yang, Yuecheng</creatorcontrib><creatorcontrib>Smith, Jesse J.</creatorcontrib><creatorcontrib>Hoffmann, Ethan</creatorcontrib><creatorcontrib>Carney, David P.</creatorcontrib><creatorcontrib>Perni, Robert B.</creatorcontrib><creatorcontrib>Jirousek, Michael R.</creatorcontrib><creatorcontrib>Bemis, Jean E.</creatorcontrib><creatorcontrib>Milne, Jill C.</creatorcontrib><creatorcontrib>Sinclair, David A.</creatorcontrib><creatorcontrib>Westphal, Christoph H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Lei</au><au>Galonek, Heidi</au><au>Israelian, Kristine</au><au>Choy, Wendy</au><au>Morrison, Michael</au><au>Xia, Yu</au><au>Wang, Xiaohong</au><au>Xu, Yihua</au><au>Yang, Yuecheng</au><au>Smith, Jesse J.</au><au>Hoffmann, Ethan</au><au>Carney, David P.</au><au>Perni, Robert B.</au><au>Jirousek, Michael R.</au><au>Bemis, Jean E.</au><au>Milne, Jill C.</au><au>Sinclair, David A.</au><au>Westphal, Christoph H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2009-03</date><risdate>2009</risdate><volume>18</volume><issue>3</issue><spage>514</spage><epage>525</epage><pages>514-525</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>SIRT3 is a key mitochondrial protein deacetylase proposed to play key roles in regulating mitochondrial metabolism but there has been considerable debate about its actual size, the sequences required for activity, and its subcellular localization. A previously cloned mouse SIRT3 has high sequence similarity with the C‐terminus of human SIRT3 but lacks an N‐terminal mitochondrial targeting sequence and has no detectable deacetylation activity in vitro. Using 5′ rapid amplification of cDNA ends, we cloned the entire sequence of mouse SIRT3, as well as rat and rabbit SIRT3. Importantly, we find that full‐length SIRT3 protein localizes exclusively to the mitochondria, in contrast to reports of SIRT3 localization to the nucleus. We demonstrate that SIRT3 has no deacetylation activity in vitro unless the protein is truncated, consistent with human SIRT3. In addition, we determined the inhibition constants and mechanism of action for nicotinamide and a small molecule SIRT3 inhibitor against active mouse SIRT3 and show that the mechanisms are different for the two compounds with respect to peptide substrate and NAD+. Thus, identification and characterization of the actual SIRT3 sequence should help resolve the debate about the nature of mouse SIRT3 and identify new mechanisms to modulate enzymatic activity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19241369</pmid><doi>10.1002/pro.50</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2009-03, Vol.18 (3), p.514-525
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2760358
source Access via Wiley Online Library; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Animals
Base Sequence
Cells, Cultured
Cloning, Molecular
Heterocyclic Compounds, 4 or More Rings - metabolism
inhibitor
Mice
Mitochondria - metabolism
mitochondrial function
Mitochondrial Proteins - antagonists & inhibitors
Mitochondrial Proteins - chemistry
Mitochondrial Proteins - genetics
Mitochondrial Proteins - metabolism
Molecular Sequence Data
NAD+‐dependent deacetylation
Niacinamide - metabolism
Protein Sorting Signals
Rabbits
Rats
Recombinant Fusion Proteins - antagonists & inhibitors
Recombinant Fusion Proteins - chemistry
Recombinant Fusion Proteins - genetics
Recombinant Fusion Proteins - metabolism
Sequence Alignment
sirtuin
Sirtuin 3
Sirtuins - antagonists & inhibitors
Sirtuins - chemistry
Sirtuins - genetics
Sirtuins - metabolism
Tissue Distribution - genetics
title Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T13%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20characterization,%20localization,%20and%20tissue%20distribution%20of%20the%20longer%20form%20of%20mouse%20SIRT3&rft.jtitle=Protein%20science&rft.au=Jin,%20Lei&rft.date=2009-03&rft.volume=18&rft.issue=3&rft.spage=514&rft.epage=525&rft.pages=514-525&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.50&rft_dat=%3Cwiley_pubme%3EPRO50%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19241369&rfr_iscdi=true