Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3
SIRT3 is a key mitochondrial protein deacetylase proposed to play key roles in regulating mitochondrial metabolism but there has been considerable debate about its actual size, the sequences required for activity, and its subcellular localization. A previously cloned mouse SIRT3 has high sequence si...
Gespeichert in:
Veröffentlicht in: | Protein science 2009-03, Vol.18 (3), p.514-525 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 525 |
---|---|
container_issue | 3 |
container_start_page | 514 |
container_title | Protein science |
container_volume | 18 |
creator | Jin, Lei Galonek, Heidi Israelian, Kristine Choy, Wendy Morrison, Michael Xia, Yu Wang, Xiaohong Xu, Yihua Yang, Yuecheng Smith, Jesse J. Hoffmann, Ethan Carney, David P. Perni, Robert B. Jirousek, Michael R. Bemis, Jean E. Milne, Jill C. Sinclair, David A. Westphal, Christoph H. |
description | SIRT3 is a key mitochondrial protein deacetylase proposed to play key roles in regulating mitochondrial metabolism but there has been considerable debate about its actual size, the sequences required for activity, and its subcellular localization. A previously cloned mouse SIRT3 has high sequence similarity with the C‐terminus of human SIRT3 but lacks an N‐terminal mitochondrial targeting sequence and has no detectable deacetylation activity in vitro. Using 5′ rapid amplification of cDNA ends, we cloned the entire sequence of mouse SIRT3, as well as rat and rabbit SIRT3. Importantly, we find that full‐length SIRT3 protein localizes exclusively to the mitochondria, in contrast to reports of SIRT3 localization to the nucleus. We demonstrate that SIRT3 has no deacetylation activity in vitro unless the protein is truncated, consistent with human SIRT3. In addition, we determined the inhibition constants and mechanism of action for nicotinamide and a small molecule SIRT3 inhibitor against active mouse SIRT3 and show that the mechanisms are different for the two compounds with respect to peptide substrate and NAD+. Thus, identification and characterization of the actual SIRT3 sequence should help resolve the debate about the nature of mouse SIRT3 and identify new mechanisms to modulate enzymatic activity. |
doi_str_mv | 10.1002/pro.50 |
format | Article |
fullrecord | <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2760358</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PRO50</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4640-c993a278457995ada0d35e08ca0cdf65b2a2a65f86bf0f7f5768739c1ba270043</originalsourceid><addsrcrecordid>eNp1kN9LwzAQgIMobk79EyRPgmBn0jRp8yLo8MdAmMwJvpU0TbZI24ykVeZfb8bG1Aefjrv77jvuADjFaIgRiq-Wzg4p2gN9nDAeZZy97YM-4gxHGWFZDxx5_44QSnBMDkEP8zjBhPE-ULfGyoWqjRQVlAvhhGyVM1-iNba5hJUN9V0mmhK2xvtOwdL41pmiWzeg1bBdqAA3c-Wgtq5el2rbeQVfxtMZOQYHWlRenWzjALze381Gj9HT5GE8unmKZMISFEnOiYjTLKEp51SUApWEKpRJgWSpGS1iEQtGdcYKjXSqacqylHCJizAVjiMDcL3xLruiVqVUTetElS-dqYVb5VaY_G-nMYt8bj_yOGWI0CwIzjcC6az3TundLEb5-tEhtzlFATz7vekH2342ABcb4NNUavWPJn-eToLsGz5JiOw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3</title><source>Access via Wiley Online Library</source><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Wiley Online Library (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Jin, Lei ; Galonek, Heidi ; Israelian, Kristine ; Choy, Wendy ; Morrison, Michael ; Xia, Yu ; Wang, Xiaohong ; Xu, Yihua ; Yang, Yuecheng ; Smith, Jesse J. ; Hoffmann, Ethan ; Carney, David P. ; Perni, Robert B. ; Jirousek, Michael R. ; Bemis, Jean E. ; Milne, Jill C. ; Sinclair, David A. ; Westphal, Christoph H.</creator><creatorcontrib>Jin, Lei ; Galonek, Heidi ; Israelian, Kristine ; Choy, Wendy ; Morrison, Michael ; Xia, Yu ; Wang, Xiaohong ; Xu, Yihua ; Yang, Yuecheng ; Smith, Jesse J. ; Hoffmann, Ethan ; Carney, David P. ; Perni, Robert B. ; Jirousek, Michael R. ; Bemis, Jean E. ; Milne, Jill C. ; Sinclair, David A. ; Westphal, Christoph H.</creatorcontrib><description>SIRT3 is a key mitochondrial protein deacetylase proposed to play key roles in regulating mitochondrial metabolism but there has been considerable debate about its actual size, the sequences required for activity, and its subcellular localization. A previously cloned mouse SIRT3 has high sequence similarity with the C‐terminus of human SIRT3 but lacks an N‐terminal mitochondrial targeting sequence and has no detectable deacetylation activity in vitro. Using 5′ rapid amplification of cDNA ends, we cloned the entire sequence of mouse SIRT3, as well as rat and rabbit SIRT3. Importantly, we find that full‐length SIRT3 protein localizes exclusively to the mitochondria, in contrast to reports of SIRT3 localization to the nucleus. We demonstrate that SIRT3 has no deacetylation activity in vitro unless the protein is truncated, consistent with human SIRT3. In addition, we determined the inhibition constants and mechanism of action for nicotinamide and a small molecule SIRT3 inhibitor against active mouse SIRT3 and show that the mechanisms are different for the two compounds with respect to peptide substrate and NAD+. Thus, identification and characterization of the actual SIRT3 sequence should help resolve the debate about the nature of mouse SIRT3 and identify new mechanisms to modulate enzymatic activity.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.50</identifier><identifier>PMID: 19241369</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Amino Acid Sequence ; Animals ; Base Sequence ; Cells, Cultured ; Cloning, Molecular ; Heterocyclic Compounds, 4 or More Rings - metabolism ; inhibitor ; Mice ; Mitochondria - metabolism ; mitochondrial function ; Mitochondrial Proteins - antagonists & inhibitors ; Mitochondrial Proteins - chemistry ; Mitochondrial Proteins - genetics ; Mitochondrial Proteins - metabolism ; Molecular Sequence Data ; NAD+‐dependent deacetylation ; Niacinamide - metabolism ; Protein Sorting Signals ; Rabbits ; Rats ; Recombinant Fusion Proteins - antagonists & inhibitors ; Recombinant Fusion Proteins - chemistry ; Recombinant Fusion Proteins - genetics ; Recombinant Fusion Proteins - metabolism ; Sequence Alignment ; sirtuin ; Sirtuin 3 ; Sirtuins - antagonists & inhibitors ; Sirtuins - chemistry ; Sirtuins - genetics ; Sirtuins - metabolism ; Tissue Distribution - genetics</subject><ispartof>Protein science, 2009-03, Vol.18 (3), p.514-525</ispartof><rights>Copyright © 2009 The Protein Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4640-c993a278457995ada0d35e08ca0cdf65b2a2a65f86bf0f7f5768739c1ba270043</citedby><cites>FETCH-LOGICAL-c4640-c993a278457995ada0d35e08ca0cdf65b2a2a65f86bf0f7f5768739c1ba270043</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760358/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2760358/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,315,729,782,786,887,1419,1435,27933,27934,45583,45584,46418,46842,53800,53802</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19241369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Jin, Lei</creatorcontrib><creatorcontrib>Galonek, Heidi</creatorcontrib><creatorcontrib>Israelian, Kristine</creatorcontrib><creatorcontrib>Choy, Wendy</creatorcontrib><creatorcontrib>Morrison, Michael</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Xu, Yihua</creatorcontrib><creatorcontrib>Yang, Yuecheng</creatorcontrib><creatorcontrib>Smith, Jesse J.</creatorcontrib><creatorcontrib>Hoffmann, Ethan</creatorcontrib><creatorcontrib>Carney, David P.</creatorcontrib><creatorcontrib>Perni, Robert B.</creatorcontrib><creatorcontrib>Jirousek, Michael R.</creatorcontrib><creatorcontrib>Bemis, Jean E.</creatorcontrib><creatorcontrib>Milne, Jill C.</creatorcontrib><creatorcontrib>Sinclair, David A.</creatorcontrib><creatorcontrib>Westphal, Christoph H.</creatorcontrib><title>Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>SIRT3 is a key mitochondrial protein deacetylase proposed to play key roles in regulating mitochondrial metabolism but there has been considerable debate about its actual size, the sequences required for activity, and its subcellular localization. A previously cloned mouse SIRT3 has high sequence similarity with the C‐terminus of human SIRT3 but lacks an N‐terminal mitochondrial targeting sequence and has no detectable deacetylation activity in vitro. Using 5′ rapid amplification of cDNA ends, we cloned the entire sequence of mouse SIRT3, as well as rat and rabbit SIRT3. Importantly, we find that full‐length SIRT3 protein localizes exclusively to the mitochondria, in contrast to reports of SIRT3 localization to the nucleus. We demonstrate that SIRT3 has no deacetylation activity in vitro unless the protein is truncated, consistent with human SIRT3. In addition, we determined the inhibition constants and mechanism of action for nicotinamide and a small molecule SIRT3 inhibitor against active mouse SIRT3 and show that the mechanisms are different for the two compounds with respect to peptide substrate and NAD+. Thus, identification and characterization of the actual SIRT3 sequence should help resolve the debate about the nature of mouse SIRT3 and identify new mechanisms to modulate enzymatic activity.</description><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Base Sequence</subject><subject>Cells, Cultured</subject><subject>Cloning, Molecular</subject><subject>Heterocyclic Compounds, 4 or More Rings - metabolism</subject><subject>inhibitor</subject><subject>Mice</subject><subject>Mitochondria - metabolism</subject><subject>mitochondrial function</subject><subject>Mitochondrial Proteins - antagonists & inhibitors</subject><subject>Mitochondrial Proteins - chemistry</subject><subject>Mitochondrial Proteins - genetics</subject><subject>Mitochondrial Proteins - metabolism</subject><subject>Molecular Sequence Data</subject><subject>NAD+‐dependent deacetylation</subject><subject>Niacinamide - metabolism</subject><subject>Protein Sorting Signals</subject><subject>Rabbits</subject><subject>Rats</subject><subject>Recombinant Fusion Proteins - antagonists & inhibitors</subject><subject>Recombinant Fusion Proteins - chemistry</subject><subject>Recombinant Fusion Proteins - genetics</subject><subject>Recombinant Fusion Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>sirtuin</subject><subject>Sirtuin 3</subject><subject>Sirtuins - antagonists & inhibitors</subject><subject>Sirtuins - chemistry</subject><subject>Sirtuins - genetics</subject><subject>Sirtuins - metabolism</subject><subject>Tissue Distribution - genetics</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kN9LwzAQgIMobk79EyRPgmBn0jRp8yLo8MdAmMwJvpU0TbZI24ykVeZfb8bG1Aefjrv77jvuADjFaIgRiq-Wzg4p2gN9nDAeZZy97YM-4gxHGWFZDxx5_44QSnBMDkEP8zjBhPE-ULfGyoWqjRQVlAvhhGyVM1-iNba5hJUN9V0mmhK2xvtOwdL41pmiWzeg1bBdqAA3c-Wgtq5el2rbeQVfxtMZOQYHWlRenWzjALze381Gj9HT5GE8unmKZMISFEnOiYjTLKEp51SUApWEKpRJgWSpGS1iEQtGdcYKjXSqacqylHCJizAVjiMDcL3xLruiVqVUTetElS-dqYVb5VaY_G-nMYt8bj_yOGWI0CwIzjcC6az3TundLEb5-tEhtzlFATz7vekH2342ABcb4NNUavWPJn-eToLsGz5JiOw</recordid><startdate>200903</startdate><enddate>200903</enddate><creator>Jin, Lei</creator><creator>Galonek, Heidi</creator><creator>Israelian, Kristine</creator><creator>Choy, Wendy</creator><creator>Morrison, Michael</creator><creator>Xia, Yu</creator><creator>Wang, Xiaohong</creator><creator>Xu, Yihua</creator><creator>Yang, Yuecheng</creator><creator>Smith, Jesse J.</creator><creator>Hoffmann, Ethan</creator><creator>Carney, David P.</creator><creator>Perni, Robert B.</creator><creator>Jirousek, Michael R.</creator><creator>Bemis, Jean E.</creator><creator>Milne, Jill C.</creator><creator>Sinclair, David A.</creator><creator>Westphal, Christoph H.</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>200903</creationdate><title>Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3</title><author>Jin, Lei ; Galonek, Heidi ; Israelian, Kristine ; Choy, Wendy ; Morrison, Michael ; Xia, Yu ; Wang, Xiaohong ; Xu, Yihua ; Yang, Yuecheng ; Smith, Jesse J. ; Hoffmann, Ethan ; Carney, David P. ; Perni, Robert B. ; Jirousek, Michael R. ; Bemis, Jean E. ; Milne, Jill C. ; Sinclair, David A. ; Westphal, Christoph H.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4640-c993a278457995ada0d35e08ca0cdf65b2a2a65f86bf0f7f5768739c1ba270043</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Base Sequence</topic><topic>Cells, Cultured</topic><topic>Cloning, Molecular</topic><topic>Heterocyclic Compounds, 4 or More Rings - metabolism</topic><topic>inhibitor</topic><topic>Mice</topic><topic>Mitochondria - metabolism</topic><topic>mitochondrial function</topic><topic>Mitochondrial Proteins - antagonists & inhibitors</topic><topic>Mitochondrial Proteins - chemistry</topic><topic>Mitochondrial Proteins - genetics</topic><topic>Mitochondrial Proteins - metabolism</topic><topic>Molecular Sequence Data</topic><topic>NAD+‐dependent deacetylation</topic><topic>Niacinamide - metabolism</topic><topic>Protein Sorting Signals</topic><topic>Rabbits</topic><topic>Rats</topic><topic>Recombinant Fusion Proteins - antagonists & inhibitors</topic><topic>Recombinant Fusion Proteins - chemistry</topic><topic>Recombinant Fusion Proteins - genetics</topic><topic>Recombinant Fusion Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>sirtuin</topic><topic>Sirtuin 3</topic><topic>Sirtuins - antagonists & inhibitors</topic><topic>Sirtuins - chemistry</topic><topic>Sirtuins - genetics</topic><topic>Sirtuins - metabolism</topic><topic>Tissue Distribution - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Jin, Lei</creatorcontrib><creatorcontrib>Galonek, Heidi</creatorcontrib><creatorcontrib>Israelian, Kristine</creatorcontrib><creatorcontrib>Choy, Wendy</creatorcontrib><creatorcontrib>Morrison, Michael</creatorcontrib><creatorcontrib>Xia, Yu</creatorcontrib><creatorcontrib>Wang, Xiaohong</creatorcontrib><creatorcontrib>Xu, Yihua</creatorcontrib><creatorcontrib>Yang, Yuecheng</creatorcontrib><creatorcontrib>Smith, Jesse J.</creatorcontrib><creatorcontrib>Hoffmann, Ethan</creatorcontrib><creatorcontrib>Carney, David P.</creatorcontrib><creatorcontrib>Perni, Robert B.</creatorcontrib><creatorcontrib>Jirousek, Michael R.</creatorcontrib><creatorcontrib>Bemis, Jean E.</creatorcontrib><creatorcontrib>Milne, Jill C.</creatorcontrib><creatorcontrib>Sinclair, David A.</creatorcontrib><creatorcontrib>Westphal, Christoph H.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Jin, Lei</au><au>Galonek, Heidi</au><au>Israelian, Kristine</au><au>Choy, Wendy</au><au>Morrison, Michael</au><au>Xia, Yu</au><au>Wang, Xiaohong</au><au>Xu, Yihua</au><au>Yang, Yuecheng</au><au>Smith, Jesse J.</au><au>Hoffmann, Ethan</au><au>Carney, David P.</au><au>Perni, Robert B.</au><au>Jirousek, Michael R.</au><au>Bemis, Jean E.</au><au>Milne, Jill C.</au><au>Sinclair, David A.</au><au>Westphal, Christoph H.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2009-03</date><risdate>2009</risdate><volume>18</volume><issue>3</issue><spage>514</spage><epage>525</epage><pages>514-525</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>SIRT3 is a key mitochondrial protein deacetylase proposed to play key roles in regulating mitochondrial metabolism but there has been considerable debate about its actual size, the sequences required for activity, and its subcellular localization. A previously cloned mouse SIRT3 has high sequence similarity with the C‐terminus of human SIRT3 but lacks an N‐terminal mitochondrial targeting sequence and has no detectable deacetylation activity in vitro. Using 5′ rapid amplification of cDNA ends, we cloned the entire sequence of mouse SIRT3, as well as rat and rabbit SIRT3. Importantly, we find that full‐length SIRT3 protein localizes exclusively to the mitochondria, in contrast to reports of SIRT3 localization to the nucleus. We demonstrate that SIRT3 has no deacetylation activity in vitro unless the protein is truncated, consistent with human SIRT3. In addition, we determined the inhibition constants and mechanism of action for nicotinamide and a small molecule SIRT3 inhibitor against active mouse SIRT3 and show that the mechanisms are different for the two compounds with respect to peptide substrate and NAD+. Thus, identification and characterization of the actual SIRT3 sequence should help resolve the debate about the nature of mouse SIRT3 and identify new mechanisms to modulate enzymatic activity.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19241369</pmid><doi>10.1002/pro.50</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2009-03, Vol.18 (3), p.514-525 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2760358 |
source | Access via Wiley Online Library; MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Wiley Online Library (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Amino Acid Sequence Animals Base Sequence Cells, Cultured Cloning, Molecular Heterocyclic Compounds, 4 or More Rings - metabolism inhibitor Mice Mitochondria - metabolism mitochondrial function Mitochondrial Proteins - antagonists & inhibitors Mitochondrial Proteins - chemistry Mitochondrial Proteins - genetics Mitochondrial Proteins - metabolism Molecular Sequence Data NAD+‐dependent deacetylation Niacinamide - metabolism Protein Sorting Signals Rabbits Rats Recombinant Fusion Proteins - antagonists & inhibitors Recombinant Fusion Proteins - chemistry Recombinant Fusion Proteins - genetics Recombinant Fusion Proteins - metabolism Sequence Alignment sirtuin Sirtuin 3 Sirtuins - antagonists & inhibitors Sirtuins - chemistry Sirtuins - genetics Sirtuins - metabolism Tissue Distribution - genetics |
title | Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3 |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-01T13%3A32%3A07IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biochemical%20characterization,%20localization,%20and%20tissue%20distribution%20of%20the%20longer%20form%20of%20mouse%20SIRT3&rft.jtitle=Protein%20science&rft.au=Jin,%20Lei&rft.date=2009-03&rft.volume=18&rft.issue=3&rft.spage=514&rft.epage=525&rft.pages=514-525&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.50&rft_dat=%3Cwiley_pubme%3EPRO50%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19241369&rfr_iscdi=true |