Epac Activates the Small G Proteins Rap1 and Rab3A to Achieve Exocytosis

Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions byp...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-09, Vol.284 (37), p.24825-24839
Hauptverfasser: Branham, María T., Bustos, Matías A., De Blas, Gerardo A., Rehmann, Holger, Zarelli, Valeria E.P., Treviño, Claudia L., Darszon, Alberto, Mayorga, Luis S., Tomes, Claudia N.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 24839
container_issue 37
container_start_page 24825
container_title The Journal of biological chemistry
container_volume 284
creator Branham, María T.
Bustos, Matías A.
De Blas, Gerardo A.
Rehmann, Holger
Zarelli, Valeria E.P.
Treviño, Claudia L.
Darszon, Alberto
Mayorga, Luis S.
Tomes, Claudia N.
description Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions bypasses some of these requirements and elicits exocytosis in a protein kinase A- and extracellular calcium-independent manner. The relevant cAMP target is Epac, a guanine nucleotide exchange factor for the small GTPase Rap. We show here that a soluble adenylyl cyclase synthesizes the cAMP required for the acrosome reaction. Epac stimulates the exchange of GDP for GTP on Rap1, upstream of a phospholipase C. The Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP induces a phospholipase C-dependent calcium mobilization in human sperm suspensions. In addition, our studies identify a novel connection between cAMP and Rab3A, a secretory granule-associated protein, revealing that the latter functions downstream of soluble adenylyl cyclase/cAMP/Epac but not of Rap1. Challenging sperm with calcium or 8-pCPT-2′-O-Me-cAMP boosts the exchange of GDP for GTP on Rab3A. Recombinant Epac does not release GDP from Rab3A in vitro, suggesting that the Rab3A-GEF activation by cAMP/Epac in vivo is indirect. We propose that Epac sits at a critical point during the exocytotic cascade after which the pathway splits into two limbs, one that assembles the fusion machinery into place and another that elicits intracellular calcium release.
doi_str_mv 10.1074/jbc.M109.015362
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2757186</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820305718</els_id><sourcerecordid>67633490</sourcerecordid><originalsourceid>FETCH-LOGICAL-c560t-2c70e14ca86b254fde03e92dd9cdff24715eea558b15d98848a5f914145b8fc53</originalsourceid><addsrcrecordid>eNp1kE1v1DAQhiMEokvhzA1yQNyy9fgjsS9Iq2ppkYpAlErcLMeZbFxl48X2LvTf41VWfBzwxZb8zDszT1G8BLIE0vCL-9YuPwJRSwKC1fRRsQAiWcUEfHtcLAihUCkq5FnxLMZ7kg9X8LQ4AyV4TSldFNfrnbHlyiZ3MAljmQYsb7dmHMur8nPwCd0Uyy9mB6WZuvxo2apMPhcMDg9Yrn96-5B8dPF58aQ3Y8QXp_u8uHu__np5Xd18uvpwubqprKhJqqhtCAK3RtYtFbzvkDBUtOuU7fqe8gYEohFCtiA6JSWXRvQKOHDRyt4Kdl68m3N3-3aLncUpBTPqXXBbEx60N07_-zO5QW_8QdNGNCDrHPD2FBD89z3GpLcuWhxHM6HfR103NWNckQxezKANPsaA_e8mQPTRvs729dG-nu3nild_z_aHP-nOwJsZGNxm-OEC6tZ5O-BWU8k1azTlkh53fD1jvfHabIKL-u6WEmAE6kYIOC6hZgKz6oPDoKN1OFnscqhNuvPuv1P-AnqmqFM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67633490</pqid></control><display><type>article</type><title>Epac Activates the Small G Proteins Rap1 and Rab3A to Achieve Exocytosis</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Branham, María T. ; Bustos, Matías A. ; De Blas, Gerardo A. ; Rehmann, Holger ; Zarelli, Valeria E.P. ; Treviño, Claudia L. ; Darszon, Alberto ; Mayorga, Luis S. ; Tomes, Claudia N.</creator><creatorcontrib>Branham, María T. ; Bustos, Matías A. ; De Blas, Gerardo A. ; Rehmann, Holger ; Zarelli, Valeria E.P. ; Treviño, Claudia L. ; Darszon, Alberto ; Mayorga, Luis S. ; Tomes, Claudia N.</creatorcontrib><description>Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions bypasses some of these requirements and elicits exocytosis in a protein kinase A- and extracellular calcium-independent manner. The relevant cAMP target is Epac, a guanine nucleotide exchange factor for the small GTPase Rap. We show here that a soluble adenylyl cyclase synthesizes the cAMP required for the acrosome reaction. Epac stimulates the exchange of GDP for GTP on Rap1, upstream of a phospholipase C. The Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP induces a phospholipase C-dependent calcium mobilization in human sperm suspensions. In addition, our studies identify a novel connection between cAMP and Rab3A, a secretory granule-associated protein, revealing that the latter functions downstream of soluble adenylyl cyclase/cAMP/Epac but not of Rap1. Challenging sperm with calcium or 8-pCPT-2′-O-Me-cAMP boosts the exchange of GDP for GTP on Rab3A. Recombinant Epac does not release GDP from Rab3A in vitro, suggesting that the Rab3A-GEF activation by cAMP/Epac in vivo is indirect. We propose that Epac sits at a critical point during the exocytotic cascade after which the pathway splits into two limbs, one that assembles the fusion machinery into place and another that elicits intracellular calcium release.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.015362</identifier><identifier>PMID: 19546222</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Acrosome Reaction ; Apolipoprotein A-V ; Apolipoproteins A - metabolism ; Calcium - metabolism ; Exocytosis - physiology ; Fertilization ; GTP-Binding Proteins - metabolism ; Guanine Nucleotide Exchange Factors - metabolism ; Guanosine Triphosphate - metabolism ; Humans ; Male ; Mechanisms of Signal Transduction ; Models, Biological ; Protein Structure, Tertiary ; Recombinant Proteins - chemistry ; Recombinant Proteins - metabolism ; Spermatozoa - metabolism ; Telomere-Binding Proteins - metabolism</subject><ispartof>The Journal of biological chemistry, 2009-09, Vol.284 (37), p.24825-24839</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2009 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c560t-2c70e14ca86b254fde03e92dd9cdff24715eea558b15d98848a5f914145b8fc53</citedby><cites>FETCH-LOGICAL-c560t-2c70e14ca86b254fde03e92dd9cdff24715eea558b15d98848a5f914145b8fc53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757186/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2757186/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19546222$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Branham, María T.</creatorcontrib><creatorcontrib>Bustos, Matías A.</creatorcontrib><creatorcontrib>De Blas, Gerardo A.</creatorcontrib><creatorcontrib>Rehmann, Holger</creatorcontrib><creatorcontrib>Zarelli, Valeria E.P.</creatorcontrib><creatorcontrib>Treviño, Claudia L.</creatorcontrib><creatorcontrib>Darszon, Alberto</creatorcontrib><creatorcontrib>Mayorga, Luis S.</creatorcontrib><creatorcontrib>Tomes, Claudia N.</creatorcontrib><title>Epac Activates the Small G Proteins Rap1 and Rab3A to Achieve Exocytosis</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions bypasses some of these requirements and elicits exocytosis in a protein kinase A- and extracellular calcium-independent manner. The relevant cAMP target is Epac, a guanine nucleotide exchange factor for the small GTPase Rap. We show here that a soluble adenylyl cyclase synthesizes the cAMP required for the acrosome reaction. Epac stimulates the exchange of GDP for GTP on Rap1, upstream of a phospholipase C. The Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP induces a phospholipase C-dependent calcium mobilization in human sperm suspensions. In addition, our studies identify a novel connection between cAMP and Rab3A, a secretory granule-associated protein, revealing that the latter functions downstream of soluble adenylyl cyclase/cAMP/Epac but not of Rap1. Challenging sperm with calcium or 8-pCPT-2′-O-Me-cAMP boosts the exchange of GDP for GTP on Rab3A. Recombinant Epac does not release GDP from Rab3A in vitro, suggesting that the Rab3A-GEF activation by cAMP/Epac in vivo is indirect. We propose that Epac sits at a critical point during the exocytotic cascade after which the pathway splits into two limbs, one that assembles the fusion machinery into place and another that elicits intracellular calcium release.</description><subject>Acrosome Reaction</subject><subject>Apolipoprotein A-V</subject><subject>Apolipoproteins A - metabolism</subject><subject>Calcium - metabolism</subject><subject>Exocytosis - physiology</subject><subject>Fertilization</subject><subject>GTP-Binding Proteins - metabolism</subject><subject>Guanine Nucleotide Exchange Factors - metabolism</subject><subject>Guanosine Triphosphate - metabolism</subject><subject>Humans</subject><subject>Male</subject><subject>Mechanisms of Signal Transduction</subject><subject>Models, Biological</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - metabolism</subject><subject>Spermatozoa - metabolism</subject><subject>Telomere-Binding Proteins - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kE1v1DAQhiMEokvhzA1yQNyy9fgjsS9Iq2ppkYpAlErcLMeZbFxl48X2LvTf41VWfBzwxZb8zDszT1G8BLIE0vCL-9YuPwJRSwKC1fRRsQAiWcUEfHtcLAihUCkq5FnxLMZ7kg9X8LQ4AyV4TSldFNfrnbHlyiZ3MAljmQYsb7dmHMur8nPwCd0Uyy9mB6WZuvxo2apMPhcMDg9Yrn96-5B8dPF58aQ3Y8QXp_u8uHu__np5Xd18uvpwubqprKhJqqhtCAK3RtYtFbzvkDBUtOuU7fqe8gYEohFCtiA6JSWXRvQKOHDRyt4Kdl68m3N3-3aLncUpBTPqXXBbEx60N07_-zO5QW_8QdNGNCDrHPD2FBD89z3GpLcuWhxHM6HfR103NWNckQxezKANPsaA_e8mQPTRvs729dG-nu3nild_z_aHP-nOwJsZGNxm-OEC6tZ5O-BWU8k1azTlkh53fD1jvfHabIKL-u6WEmAE6kYIOC6hZgKz6oPDoKN1OFnscqhNuvPuv1P-AnqmqFM</recordid><startdate>20090911</startdate><enddate>20090911</enddate><creator>Branham, María T.</creator><creator>Bustos, Matías A.</creator><creator>De Blas, Gerardo A.</creator><creator>Rehmann, Holger</creator><creator>Zarelli, Valeria E.P.</creator><creator>Treviño, Claudia L.</creator><creator>Darszon, Alberto</creator><creator>Mayorga, Luis S.</creator><creator>Tomes, Claudia N.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090911</creationdate><title>Epac Activates the Small G Proteins Rap1 and Rab3A to Achieve Exocytosis</title><author>Branham, María T. ; Bustos, Matías A. ; De Blas, Gerardo A. ; Rehmann, Holger ; Zarelli, Valeria E.P. ; Treviño, Claudia L. ; Darszon, Alberto ; Mayorga, Luis S. ; Tomes, Claudia N.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c560t-2c70e14ca86b254fde03e92dd9cdff24715eea558b15d98848a5f914145b8fc53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acrosome Reaction</topic><topic>Apolipoprotein A-V</topic><topic>Apolipoproteins A - metabolism</topic><topic>Calcium - metabolism</topic><topic>Exocytosis - physiology</topic><topic>Fertilization</topic><topic>GTP-Binding Proteins - metabolism</topic><topic>Guanine Nucleotide Exchange Factors - metabolism</topic><topic>Guanosine Triphosphate - metabolism</topic><topic>Humans</topic><topic>Male</topic><topic>Mechanisms of Signal Transduction</topic><topic>Models, Biological</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - metabolism</topic><topic>Spermatozoa - metabolism</topic><topic>Telomere-Binding Proteins - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Branham, María T.</creatorcontrib><creatorcontrib>Bustos, Matías A.</creatorcontrib><creatorcontrib>De Blas, Gerardo A.</creatorcontrib><creatorcontrib>Rehmann, Holger</creatorcontrib><creatorcontrib>Zarelli, Valeria E.P.</creatorcontrib><creatorcontrib>Treviño, Claudia L.</creatorcontrib><creatorcontrib>Darszon, Alberto</creatorcontrib><creatorcontrib>Mayorga, Luis S.</creatorcontrib><creatorcontrib>Tomes, Claudia N.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Branham, María T.</au><au>Bustos, Matías A.</au><au>De Blas, Gerardo A.</au><au>Rehmann, Holger</au><au>Zarelli, Valeria E.P.</au><au>Treviño, Claudia L.</au><au>Darszon, Alberto</au><au>Mayorga, Luis S.</au><au>Tomes, Claudia N.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Epac Activates the Small G Proteins Rap1 and Rab3A to Achieve Exocytosis</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-09-11</date><risdate>2009</risdate><volume>284</volume><issue>37</issue><spage>24825</spage><epage>24839</epage><pages>24825-24839</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Exocytosis of the acrosome (the acrosome reaction) relies on cAMP production, assembly of a proteinaceous fusion machinery, calcium influx from the extracellular medium, and mobilization from inositol 1,4,5-trisphosphate-sensitive intracellular stores. Addition of cAMP to human sperm suspensions bypasses some of these requirements and elicits exocytosis in a protein kinase A- and extracellular calcium-independent manner. The relevant cAMP target is Epac, a guanine nucleotide exchange factor for the small GTPase Rap. We show here that a soluble adenylyl cyclase synthesizes the cAMP required for the acrosome reaction. Epac stimulates the exchange of GDP for GTP on Rap1, upstream of a phospholipase C. The Epac-selective cAMP analogue 8-pCPT-2′-O-Me-cAMP induces a phospholipase C-dependent calcium mobilization in human sperm suspensions. In addition, our studies identify a novel connection between cAMP and Rab3A, a secretory granule-associated protein, revealing that the latter functions downstream of soluble adenylyl cyclase/cAMP/Epac but not of Rap1. Challenging sperm with calcium or 8-pCPT-2′-O-Me-cAMP boosts the exchange of GDP for GTP on Rab3A. Recombinant Epac does not release GDP from Rab3A in vitro, suggesting that the Rab3A-GEF activation by cAMP/Epac in vivo is indirect. We propose that Epac sits at a critical point during the exocytotic cascade after which the pathway splits into two limbs, one that assembles the fusion machinery into place and another that elicits intracellular calcium release.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19546222</pmid><doi>10.1074/jbc.M109.015362</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-09, Vol.284 (37), p.24825-24839
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2757186
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Acrosome Reaction
Apolipoprotein A-V
Apolipoproteins A - metabolism
Calcium - metabolism
Exocytosis - physiology
Fertilization
GTP-Binding Proteins - metabolism
Guanine Nucleotide Exchange Factors - metabolism
Guanosine Triphosphate - metabolism
Humans
Male
Mechanisms of Signal Transduction
Models, Biological
Protein Structure, Tertiary
Recombinant Proteins - chemistry
Recombinant Proteins - metabolism
Spermatozoa - metabolism
Telomere-Binding Proteins - metabolism
title Epac Activates the Small G Proteins Rap1 and Rab3A to Achieve Exocytosis
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T18%3A31%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Epac%20Activates%20the%20Small%20G%20Proteins%20Rap1%20and%20Rab3A%20to%20Achieve%20Exocytosis&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Branham,%20Mar%C3%ADa%20T.&rft.date=2009-09-11&rft.volume=284&rft.issue=37&rft.spage=24825&rft.epage=24839&rft.pages=24825-24839&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.015362&rft_dat=%3Cproquest_pubme%3E67633490%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67633490&rft_id=info:pmid/19546222&rft_els_id=S0021925820305718&rfr_iscdi=true