Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides
Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to t...
Gespeichert in:
Veröffentlicht in: | Biophysical journal 2009-10, Vol.97 (7), p.1917-1925 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1925 |
---|---|
container_issue | 7 |
container_start_page | 1917 |
container_title | Biophysical journal |
container_volume | 97 |
creator | Herce, H.D. Garcia, A.E. Litt, J. Kane, R.S. Martin, P. Enrique, N. Rebolledo, A. Milesi, V. |
description | Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores across the bilayer. Here we present a molecular-dynamics simulation of a peptide composed of nine Args (Arg-9) that shows that this peptide follows the same translocation pathway previously found for the Tat peptide. We test experimentally the hypothesis that transient pores open by measuring ionic currents across phospholipid bilayers and cell membranes through the pores induced by Arg-9 peptides. We find that Arg-9 peptides, in the presence of an electrostatic potential gradient, induce ionic currents across planar phospholipid bilayers, as well as in cultured osteosarcoma cells and human smooth muscle cells. Our results suggest that the mechanism of action of Arg-9 peptides involves the creation of transient pores in lipid bilayers and cell membranes. |
doi_str_mv | 10.1016/j.bpj.2009.05.066 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2756373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349509012855</els_id><sourcerecordid>734070943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-b9f652defc202da0111944da7060490a0e8042885ba22b1ba779ba1262a0ea463</originalsourceid><addsrcrecordid>eNp9kl-L1DAUxYso7uzqB_BFgg_6YutN2iQtgrCMrgq7OMj6HNL0dpqhTcaks7J-B7-zGWZY_zzsUwj3d09yDifLnlEoKFDxZlO0203BAJoCeAFCPMgWlFcsB6jFw2wBACIvq4afZKcxbgAo40AfZye0qaGSjC2yX-dhbZ11mH-1ZiAr3M62w0jeY5x1a0f7E8k8IFmNOk6aXOHUBu3wNVl6F22c0c3kh50HosnKByQXPkx6tt6R68TF0ZvD7QrNoJ2NE_E9WeI45it0OIc0deu7Z59kj3o9Rnx6PM-ybxcfrpef8ssvHz8vzy9zw6Ge87bpBWcd9oYB6zRQSpuq6rQEAVUDGjDZY3XNW81YS1stZdNqygRLI12J8ix7d9Dd7toJO5NcBD2qbbCTDrfKa6v-nTg7qLW_UUxyUcoyCbw6CgT_fZeyUpONJtlK2fhdVLKsQEJT7cmX95KMUlHXEhL44j9w43fBpRgSw0UjOeMJogfIBB9jwP7uzxTUvhNqo1In1L4TCrhKnUg7z_82-2fjWIIEvD0AmCK_sRhUNBadwc4GNLPqvL1H_jdofMkr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215697525</pqid></control><display><type>article</type><title>Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>PubMed Central</source><creator>Herce, H.D. ; Garcia, A.E. ; Litt, J. ; Kane, R.S. ; Martin, P. ; Enrique, N. ; Rebolledo, A. ; Milesi, V.</creator><creatorcontrib>Herce, H.D. ; Garcia, A.E. ; Litt, J. ; Kane, R.S. ; Martin, P. ; Enrique, N. ; Rebolledo, A. ; Milesi, V.</creatorcontrib><description>Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores across the bilayer. Here we present a molecular-dynamics simulation of a peptide composed of nine Args (Arg-9) that shows that this peptide follows the same translocation pathway previously found for the Tat peptide. We test experimentally the hypothesis that transient pores open by measuring ionic currents across phospholipid bilayers and cell membranes through the pores induced by Arg-9 peptides. We find that Arg-9 peptides, in the presence of an electrostatic potential gradient, induce ionic currents across planar phospholipid bilayers, as well as in cultured osteosarcoma cells and human smooth muscle cells. Our results suggest that the mechanism of action of Arg-9 peptides involves the creation of transient pores in lipid bilayers and cell membranes.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2009.05.066</identifier><identifier>PMID: 19804722</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino acids ; Animals ; Arginine ; Binding sites ; Cell culture ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cell Membrane Permeability ; Cell Survival ; Electric Conductivity ; Gene Products, tat - chemistry ; Gene Products, tat - metabolism ; Human immunodeficiency virus ; Human Immunodeficiency Virus Proteins - chemistry ; Humans ; Hydrogen-Ion Concentration ; Membrane ; Membranes ; Molecular Conformation ; Molecular Dynamics Simulation ; Peptides ; Peptides - chemistry ; Peptides - metabolism ; Phosphatidylcholines - chemistry ; Phosphatidylcholines - metabolism ; Phosphatidylglycerols - chemistry ; Phosphatidylglycerols - metabolism ; Porosity ; Protein Transport ; Salts - chemistry ; Salts - metabolism ; Simulation ; Water - chemistry ; Water - metabolism</subject><ispartof>Biophysical journal, 2009-10, Vol.97 (7), p.1917-1925</ispartof><rights>2009 Biophysical Society</rights><rights>Copyright Biophysical Society Oct 7, 2009</rights><rights>2009 by the Biophysical Society.. 2009 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-b9f652defc202da0111944da7060490a0e8042885ba22b1ba779ba1262a0ea463</citedby><cites>FETCH-LOGICAL-c508t-b9f652defc202da0111944da7060490a0e8042885ba22b1ba779ba1262a0ea463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756373/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2009.05.066$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,3552,27931,27932,46002,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19804722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herce, H.D.</creatorcontrib><creatorcontrib>Garcia, A.E.</creatorcontrib><creatorcontrib>Litt, J.</creatorcontrib><creatorcontrib>Kane, R.S.</creatorcontrib><creatorcontrib>Martin, P.</creatorcontrib><creatorcontrib>Enrique, N.</creatorcontrib><creatorcontrib>Rebolledo, A.</creatorcontrib><creatorcontrib>Milesi, V.</creatorcontrib><title>Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores across the bilayer. Here we present a molecular-dynamics simulation of a peptide composed of nine Args (Arg-9) that shows that this peptide follows the same translocation pathway previously found for the Tat peptide. We test experimentally the hypothesis that transient pores open by measuring ionic currents across phospholipid bilayers and cell membranes through the pores induced by Arg-9 peptides. We find that Arg-9 peptides, in the presence of an electrostatic potential gradient, induce ionic currents across planar phospholipid bilayers, as well as in cultured osteosarcoma cells and human smooth muscle cells. Our results suggest that the mechanism of action of Arg-9 peptides involves the creation of transient pores in lipid bilayers and cell membranes.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Arginine</subject><subject>Binding sites</subject><subject>Cell culture</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane Permeability</subject><subject>Cell Survival</subject><subject>Electric Conductivity</subject><subject>Gene Products, tat - chemistry</subject><subject>Gene Products, tat - metabolism</subject><subject>Human immunodeficiency virus</subject><subject>Human Immunodeficiency Virus Proteins - chemistry</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Membrane</subject><subject>Membranes</subject><subject>Molecular Conformation</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Phosphatidylglycerols - chemistry</subject><subject>Phosphatidylglycerols - metabolism</subject><subject>Porosity</subject><subject>Protein Transport</subject><subject>Salts - chemistry</subject><subject>Salts - metabolism</subject><subject>Simulation</subject><subject>Water - chemistry</subject><subject>Water - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kl-L1DAUxYso7uzqB_BFgg_6YutN2iQtgrCMrgq7OMj6HNL0dpqhTcaks7J-B7-zGWZY_zzsUwj3d09yDifLnlEoKFDxZlO0203BAJoCeAFCPMgWlFcsB6jFw2wBACIvq4afZKcxbgAo40AfZye0qaGSjC2yX-dhbZ11mH-1ZiAr3M62w0jeY5x1a0f7E8k8IFmNOk6aXOHUBu3wNVl6F22c0c3kh50HosnKByQXPkx6tt6R68TF0ZvD7QrNoJ2NE_E9WeI45it0OIc0deu7Z59kj3o9Rnx6PM-ybxcfrpef8ssvHz8vzy9zw6Ge87bpBWcd9oYB6zRQSpuq6rQEAVUDGjDZY3XNW81YS1stZdNqygRLI12J8ix7d9Dd7toJO5NcBD2qbbCTDrfKa6v-nTg7qLW_UUxyUcoyCbw6CgT_fZeyUpONJtlK2fhdVLKsQEJT7cmX95KMUlHXEhL44j9w43fBpRgSw0UjOeMJogfIBB9jwP7uzxTUvhNqo1In1L4TCrhKnUg7z_82-2fjWIIEvD0AmCK_sRhUNBadwc4GNLPqvL1H_jdofMkr</recordid><startdate>20091007</startdate><enddate>20091007</enddate><creator>Herce, H.D.</creator><creator>Garcia, A.E.</creator><creator>Litt, J.</creator><creator>Kane, R.S.</creator><creator>Martin, P.</creator><creator>Enrique, N.</creator><creator>Rebolledo, A.</creator><creator>Milesi, V.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091007</creationdate><title>Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides</title><author>Herce, H.D. ; Garcia, A.E. ; Litt, J. ; Kane, R.S. ; Martin, P. ; Enrique, N. ; Rebolledo, A. ; Milesi, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-b9f652defc202da0111944da7060490a0e8042885ba22b1ba779ba1262a0ea463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Arginine</topic><topic>Binding sites</topic><topic>Cell culture</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane Permeability</topic><topic>Cell Survival</topic><topic>Electric Conductivity</topic><topic>Gene Products, tat - chemistry</topic><topic>Gene Products, tat - metabolism</topic><topic>Human immunodeficiency virus</topic><topic>Human Immunodeficiency Virus Proteins - chemistry</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Membrane</topic><topic>Membranes</topic><topic>Molecular Conformation</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Phosphatidylglycerols - chemistry</topic><topic>Phosphatidylglycerols - metabolism</topic><topic>Porosity</topic><topic>Protein Transport</topic><topic>Salts - chemistry</topic><topic>Salts - metabolism</topic><topic>Simulation</topic><topic>Water - chemistry</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herce, H.D.</creatorcontrib><creatorcontrib>Garcia, A.E.</creatorcontrib><creatorcontrib>Litt, J.</creatorcontrib><creatorcontrib>Kane, R.S.</creatorcontrib><creatorcontrib>Martin, P.</creatorcontrib><creatorcontrib>Enrique, N.</creatorcontrib><creatorcontrib>Rebolledo, A.</creatorcontrib><creatorcontrib>Milesi, V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herce, H.D.</au><au>Garcia, A.E.</au><au>Litt, J.</au><au>Kane, R.S.</au><au>Martin, P.</au><au>Enrique, N.</au><au>Rebolledo, A.</au><au>Milesi, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2009-10-07</date><risdate>2009</risdate><volume>97</volume><issue>7</issue><spage>1917</spage><epage>1925</epage><pages>1917-1925</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores across the bilayer. Here we present a molecular-dynamics simulation of a peptide composed of nine Args (Arg-9) that shows that this peptide follows the same translocation pathway previously found for the Tat peptide. We test experimentally the hypothesis that transient pores open by measuring ionic currents across phospholipid bilayers and cell membranes through the pores induced by Arg-9 peptides. We find that Arg-9 peptides, in the presence of an electrostatic potential gradient, induce ionic currents across planar phospholipid bilayers, as well as in cultured osteosarcoma cells and human smooth muscle cells. Our results suggest that the mechanism of action of Arg-9 peptides involves the creation of transient pores in lipid bilayers and cell membranes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19804722</pmid><doi>10.1016/j.bpj.2009.05.066</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-3495 |
ispartof | Biophysical journal, 2009-10, Vol.97 (7), p.1917-1925 |
issn | 0006-3495 1542-0086 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2756373 |
source | MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier); PubMed Central |
subjects | Amino acids Animals Arginine Binding sites Cell culture Cell Membrane - chemistry Cell Membrane - metabolism Cell Membrane Permeability Cell Survival Electric Conductivity Gene Products, tat - chemistry Gene Products, tat - metabolism Human immunodeficiency virus Human Immunodeficiency Virus Proteins - chemistry Humans Hydrogen-Ion Concentration Membrane Membranes Molecular Conformation Molecular Dynamics Simulation Peptides Peptides - chemistry Peptides - metabolism Phosphatidylcholines - chemistry Phosphatidylcholines - metabolism Phosphatidylglycerols - chemistry Phosphatidylglycerols - metabolism Porosity Protein Transport Salts - chemistry Salts - metabolism Simulation Water - chemistry Water - metabolism |
title | Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arginine-Rich%20Peptides%20Destabilize%20the%20Plasma%20Membrane,%20Consistent%20with%20a%20Pore%20Formation%20Translocation%20Mechanism%20of%20Cell-Penetrating%20Peptides&rft.jtitle=Biophysical%20journal&rft.au=Herce,%20H.D.&rft.date=2009-10-07&rft.volume=97&rft.issue=7&rft.spage=1917&rft.epage=1925&rft.pages=1917-1925&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2009.05.066&rft_dat=%3Cproquest_pubme%3E734070943%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215697525&rft_id=info:pmid/19804722&rft_els_id=S0006349509012855&rfr_iscdi=true |