Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides

Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Biophysical journal 2009-10, Vol.97 (7), p.1917-1925
Hauptverfasser: Herce, H.D., Garcia, A.E., Litt, J., Kane, R.S., Martin, P., Enrique, N., Rebolledo, A., Milesi, V.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1925
container_issue 7
container_start_page 1917
container_title Biophysical journal
container_volume 97
creator Herce, H.D.
Garcia, A.E.
Litt, J.
Kane, R.S.
Martin, P.
Enrique, N.
Rebolledo, A.
Milesi, V.
description Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores across the bilayer. Here we present a molecular-dynamics simulation of a peptide composed of nine Args (Arg-9) that shows that this peptide follows the same translocation pathway previously found for the Tat peptide. We test experimentally the hypothesis that transient pores open by measuring ionic currents across phospholipid bilayers and cell membranes through the pores induced by Arg-9 peptides. We find that Arg-9 peptides, in the presence of an electrostatic potential gradient, induce ionic currents across planar phospholipid bilayers, as well as in cultured osteosarcoma cells and human smooth muscle cells. Our results suggest that the mechanism of action of Arg-9 peptides involves the creation of transient pores in lipid bilayers and cell membranes.
doi_str_mv 10.1016/j.bpj.2009.05.066
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2756373</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0006349509012855</els_id><sourcerecordid>734070943</sourcerecordid><originalsourceid>FETCH-LOGICAL-c508t-b9f652defc202da0111944da7060490a0e8042885ba22b1ba779ba1262a0ea463</originalsourceid><addsrcrecordid>eNp9kl-L1DAUxYso7uzqB_BFgg_6YutN2iQtgrCMrgq7OMj6HNL0dpqhTcaks7J-B7-zGWZY_zzsUwj3d09yDifLnlEoKFDxZlO0203BAJoCeAFCPMgWlFcsB6jFw2wBACIvq4afZKcxbgAo40AfZye0qaGSjC2yX-dhbZ11mH-1ZiAr3M62w0jeY5x1a0f7E8k8IFmNOk6aXOHUBu3wNVl6F22c0c3kh50HosnKByQXPkx6tt6R68TF0ZvD7QrNoJ2NE_E9WeI45it0OIc0deu7Z59kj3o9Rnx6PM-ybxcfrpef8ssvHz8vzy9zw6Ge87bpBWcd9oYB6zRQSpuq6rQEAVUDGjDZY3XNW81YS1stZdNqygRLI12J8ix7d9Dd7toJO5NcBD2qbbCTDrfKa6v-nTg7qLW_UUxyUcoyCbw6CgT_fZeyUpONJtlK2fhdVLKsQEJT7cmX95KMUlHXEhL44j9w43fBpRgSw0UjOeMJogfIBB9jwP7uzxTUvhNqo1In1L4TCrhKnUg7z_82-2fjWIIEvD0AmCK_sRhUNBadwc4GNLPqvL1H_jdofMkr</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>215697525</pqid></control><display><type>article</type><title>Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Access via ScienceDirect (Elsevier)</source><source>PubMed Central</source><creator>Herce, H.D. ; Garcia, A.E. ; Litt, J. ; Kane, R.S. ; Martin, P. ; Enrique, N. ; Rebolledo, A. ; Milesi, V.</creator><creatorcontrib>Herce, H.D. ; Garcia, A.E. ; Litt, J. ; Kane, R.S. ; Martin, P. ; Enrique, N. ; Rebolledo, A. ; Milesi, V.</creatorcontrib><description>Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores across the bilayer. Here we present a molecular-dynamics simulation of a peptide composed of nine Args (Arg-9) that shows that this peptide follows the same translocation pathway previously found for the Tat peptide. We test experimentally the hypothesis that transient pores open by measuring ionic currents across phospholipid bilayers and cell membranes through the pores induced by Arg-9 peptides. We find that Arg-9 peptides, in the presence of an electrostatic potential gradient, induce ionic currents across planar phospholipid bilayers, as well as in cultured osteosarcoma cells and human smooth muscle cells. Our results suggest that the mechanism of action of Arg-9 peptides involves the creation of transient pores in lipid bilayers and cell membranes.</description><identifier>ISSN: 0006-3495</identifier><identifier>EISSN: 1542-0086</identifier><identifier>DOI: 10.1016/j.bpj.2009.05.066</identifier><identifier>PMID: 19804722</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino acids ; Animals ; Arginine ; Binding sites ; Cell culture ; Cell Membrane - chemistry ; Cell Membrane - metabolism ; Cell Membrane Permeability ; Cell Survival ; Electric Conductivity ; Gene Products, tat - chemistry ; Gene Products, tat - metabolism ; Human immunodeficiency virus ; Human Immunodeficiency Virus Proteins - chemistry ; Humans ; Hydrogen-Ion Concentration ; Membrane ; Membranes ; Molecular Conformation ; Molecular Dynamics Simulation ; Peptides ; Peptides - chemistry ; Peptides - metabolism ; Phosphatidylcholines - chemistry ; Phosphatidylcholines - metabolism ; Phosphatidylglycerols - chemistry ; Phosphatidylglycerols - metabolism ; Porosity ; Protein Transport ; Salts - chemistry ; Salts - metabolism ; Simulation ; Water - chemistry ; Water - metabolism</subject><ispartof>Biophysical journal, 2009-10, Vol.97 (7), p.1917-1925</ispartof><rights>2009 Biophysical Society</rights><rights>Copyright Biophysical Society Oct 7, 2009</rights><rights>2009 by the Biophysical Society.. 2009 Biophysical Society</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c508t-b9f652defc202da0111944da7060490a0e8042885ba22b1ba779ba1262a0ea463</citedby><cites>FETCH-LOGICAL-c508t-b9f652defc202da0111944da7060490a0e8042885ba22b1ba779ba1262a0ea463</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2756373/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.bpj.2009.05.066$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,887,3552,27931,27932,46002,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19804722$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Herce, H.D.</creatorcontrib><creatorcontrib>Garcia, A.E.</creatorcontrib><creatorcontrib>Litt, J.</creatorcontrib><creatorcontrib>Kane, R.S.</creatorcontrib><creatorcontrib>Martin, P.</creatorcontrib><creatorcontrib>Enrique, N.</creatorcontrib><creatorcontrib>Rebolledo, A.</creatorcontrib><creatorcontrib>Milesi, V.</creatorcontrib><title>Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides</title><title>Biophysical journal</title><addtitle>Biophys J</addtitle><description>Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores across the bilayer. Here we present a molecular-dynamics simulation of a peptide composed of nine Args (Arg-9) that shows that this peptide follows the same translocation pathway previously found for the Tat peptide. We test experimentally the hypothesis that transient pores open by measuring ionic currents across phospholipid bilayers and cell membranes through the pores induced by Arg-9 peptides. We find that Arg-9 peptides, in the presence of an electrostatic potential gradient, induce ionic currents across planar phospholipid bilayers, as well as in cultured osteosarcoma cells and human smooth muscle cells. Our results suggest that the mechanism of action of Arg-9 peptides involves the creation of transient pores in lipid bilayers and cell membranes.</description><subject>Amino acids</subject><subject>Animals</subject><subject>Arginine</subject><subject>Binding sites</subject><subject>Cell culture</subject><subject>Cell Membrane - chemistry</subject><subject>Cell Membrane - metabolism</subject><subject>Cell Membrane Permeability</subject><subject>Cell Survival</subject><subject>Electric Conductivity</subject><subject>Gene Products, tat - chemistry</subject><subject>Gene Products, tat - metabolism</subject><subject>Human immunodeficiency virus</subject><subject>Human Immunodeficiency Virus Proteins - chemistry</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Membrane</subject><subject>Membranes</subject><subject>Molecular Conformation</subject><subject>Molecular Dynamics Simulation</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Peptides - metabolism</subject><subject>Phosphatidylcholines - chemistry</subject><subject>Phosphatidylcholines - metabolism</subject><subject>Phosphatidylglycerols - chemistry</subject><subject>Phosphatidylglycerols - metabolism</subject><subject>Porosity</subject><subject>Protein Transport</subject><subject>Salts - chemistry</subject><subject>Salts - metabolism</subject><subject>Simulation</subject><subject>Water - chemistry</subject><subject>Water - metabolism</subject><issn>0006-3495</issn><issn>1542-0086</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kl-L1DAUxYso7uzqB_BFgg_6YutN2iQtgrCMrgq7OMj6HNL0dpqhTcaks7J-B7-zGWZY_zzsUwj3d09yDifLnlEoKFDxZlO0203BAJoCeAFCPMgWlFcsB6jFw2wBACIvq4afZKcxbgAo40AfZye0qaGSjC2yX-dhbZ11mH-1ZiAr3M62w0jeY5x1a0f7E8k8IFmNOk6aXOHUBu3wNVl6F22c0c3kh50HosnKByQXPkx6tt6R68TF0ZvD7QrNoJ2NE_E9WeI45it0OIc0deu7Z59kj3o9Rnx6PM-ybxcfrpef8ssvHz8vzy9zw6Ge87bpBWcd9oYB6zRQSpuq6rQEAVUDGjDZY3XNW81YS1stZdNqygRLI12J8ix7d9Dd7toJO5NcBD2qbbCTDrfKa6v-nTg7qLW_UUxyUcoyCbw6CgT_fZeyUpONJtlK2fhdVLKsQEJT7cmX95KMUlHXEhL44j9w43fBpRgSw0UjOeMJogfIBB9jwP7uzxTUvhNqo1In1L4TCrhKnUg7z_82-2fjWIIEvD0AmCK_sRhUNBadwc4GNLPqvL1H_jdofMkr</recordid><startdate>20091007</startdate><enddate>20091007</enddate><creator>Herce, H.D.</creator><creator>Garcia, A.E.</creator><creator>Litt, J.</creator><creator>Kane, R.S.</creator><creator>Martin, P.</creator><creator>Enrique, N.</creator><creator>Rebolledo, A.</creator><creator>Milesi, V.</creator><general>Elsevier Inc</general><general>Biophysical Society</general><general>The Biophysical Society</general><scope>6I.</scope><scope>AAFTH</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091007</creationdate><title>Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides</title><author>Herce, H.D. ; Garcia, A.E. ; Litt, J. ; Kane, R.S. ; Martin, P. ; Enrique, N. ; Rebolledo, A. ; Milesi, V.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c508t-b9f652defc202da0111944da7060490a0e8042885ba22b1ba779ba1262a0ea463</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino acids</topic><topic>Animals</topic><topic>Arginine</topic><topic>Binding sites</topic><topic>Cell culture</topic><topic>Cell Membrane - chemistry</topic><topic>Cell Membrane - metabolism</topic><topic>Cell Membrane Permeability</topic><topic>Cell Survival</topic><topic>Electric Conductivity</topic><topic>Gene Products, tat - chemistry</topic><topic>Gene Products, tat - metabolism</topic><topic>Human immunodeficiency virus</topic><topic>Human Immunodeficiency Virus Proteins - chemistry</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Membrane</topic><topic>Membranes</topic><topic>Molecular Conformation</topic><topic>Molecular Dynamics Simulation</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Peptides - metabolism</topic><topic>Phosphatidylcholines - chemistry</topic><topic>Phosphatidylcholines - metabolism</topic><topic>Phosphatidylglycerols - chemistry</topic><topic>Phosphatidylglycerols - metabolism</topic><topic>Porosity</topic><topic>Protein Transport</topic><topic>Salts - chemistry</topic><topic>Salts - metabolism</topic><topic>Simulation</topic><topic>Water - chemistry</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Herce, H.D.</creatorcontrib><creatorcontrib>Garcia, A.E.</creatorcontrib><creatorcontrib>Litt, J.</creatorcontrib><creatorcontrib>Kane, R.S.</creatorcontrib><creatorcontrib>Martin, P.</creatorcontrib><creatorcontrib>Enrique, N.</creatorcontrib><creatorcontrib>Rebolledo, A.</creatorcontrib><creatorcontrib>Milesi, V.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Biophysical journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Herce, H.D.</au><au>Garcia, A.E.</au><au>Litt, J.</au><au>Kane, R.S.</au><au>Martin, P.</au><au>Enrique, N.</au><au>Rebolledo, A.</au><au>Milesi, V.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides</atitle><jtitle>Biophysical journal</jtitle><addtitle>Biophys J</addtitle><date>2009-10-07</date><risdate>2009</risdate><volume>97</volume><issue>7</issue><spage>1917</spage><epage>1925</epage><pages>1917-1925</pages><issn>0006-3495</issn><eissn>1542-0086</eissn><abstract>Recent molecular-dynamics simulations have suggested that the arginine-rich HIV Tat peptides translocate by destabilizing and inducing transient pores in phospholipid bilayers. In this pathway for peptide translocation, Arg residues play a fundamental role not only in the binding of the peptide to the surface of the membrane, but also in the destabilization and nucleation of transient pores across the bilayer. Here we present a molecular-dynamics simulation of a peptide composed of nine Args (Arg-9) that shows that this peptide follows the same translocation pathway previously found for the Tat peptide. We test experimentally the hypothesis that transient pores open by measuring ionic currents across phospholipid bilayers and cell membranes through the pores induced by Arg-9 peptides. We find that Arg-9 peptides, in the presence of an electrostatic potential gradient, induce ionic currents across planar phospholipid bilayers, as well as in cultured osteosarcoma cells and human smooth muscle cells. Our results suggest that the mechanism of action of Arg-9 peptides involves the creation of transient pores in lipid bilayers and cell membranes.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19804722</pmid><doi>10.1016/j.bpj.2009.05.066</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0006-3495
ispartof Biophysical journal, 2009-10, Vol.97 (7), p.1917-1925
issn 0006-3495
1542-0086
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2756373
source MEDLINE; Cell Press Free Archives; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Access via ScienceDirect (Elsevier); PubMed Central
subjects Amino acids
Animals
Arginine
Binding sites
Cell culture
Cell Membrane - chemistry
Cell Membrane - metabolism
Cell Membrane Permeability
Cell Survival
Electric Conductivity
Gene Products, tat - chemistry
Gene Products, tat - metabolism
Human immunodeficiency virus
Human Immunodeficiency Virus Proteins - chemistry
Humans
Hydrogen-Ion Concentration
Membrane
Membranes
Molecular Conformation
Molecular Dynamics Simulation
Peptides
Peptides - chemistry
Peptides - metabolism
Phosphatidylcholines - chemistry
Phosphatidylcholines - metabolism
Phosphatidylglycerols - chemistry
Phosphatidylglycerols - metabolism
Porosity
Protein Transport
Salts - chemistry
Salts - metabolism
Simulation
Water - chemistry
Water - metabolism
title Arginine-Rich Peptides Destabilize the Plasma Membrane, Consistent with a Pore Formation Translocation Mechanism of Cell-Penetrating Peptides
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-04T18%3A04%3A18IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Arginine-Rich%20Peptides%20Destabilize%20the%20Plasma%20Membrane,%20Consistent%20with%20a%20Pore%20Formation%20Translocation%20Mechanism%20of%20Cell-Penetrating%20Peptides&rft.jtitle=Biophysical%20journal&rft.au=Herce,%20H.D.&rft.date=2009-10-07&rft.volume=97&rft.issue=7&rft.spage=1917&rft.epage=1925&rft.pages=1917-1925&rft.issn=0006-3495&rft.eissn=1542-0086&rft_id=info:doi/10.1016/j.bpj.2009.05.066&rft_dat=%3Cproquest_pubme%3E734070943%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=215697525&rft_id=info:pmid/19804722&rft_els_id=S0006349509012855&rfr_iscdi=true