Loss of Parkin or PINK1 Function Increases Drp1-dependent Mitochondrial Fragmentation

Loss-of-function mutations in the parkin gene (PARK2) and PINK1 gene (PARK6) are associated with autosomal recessive parkinsonism. PINK1 deficiency was recently linked to mitochondrial pathology in human cells and Drosophila melanogaster, which can be rescued by parkin, suggesting that both genes pl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-08, Vol.284 (34), p.22938-22951
Hauptverfasser: Lutz, A. Kathrin, Exner, Nicole, Fett, Mareike E., Schlehe, Julia S., Kloos, Karina, Lämmermann, Kerstin, Brunner, Bettina, Kurz-Drexler, Annerose, Vogel, Frank, Reichert, Andreas S., Bouman, Lena, Vogt-Weisenhorn, Daniela, Wurst, Wolfgang, Tatzelt, Jörg, Haass, Christian, Winklhofer, Konstanze F.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 22951
container_issue 34
container_start_page 22938
container_title The Journal of biological chemistry
container_volume 284
creator Lutz, A. Kathrin
Exner, Nicole
Fett, Mareike E.
Schlehe, Julia S.
Kloos, Karina
Lämmermann, Kerstin
Brunner, Bettina
Kurz-Drexler, Annerose
Vogel, Frank
Reichert, Andreas S.
Bouman, Lena
Vogt-Weisenhorn, Daniela
Wurst, Wolfgang
Tatzelt, Jörg
Haass, Christian
Winklhofer, Konstanze F.
description Loss-of-function mutations in the parkin gene (PARK2) and PINK1 gene (PARK6) are associated with autosomal recessive parkinsonism. PINK1 deficiency was recently linked to mitochondrial pathology in human cells and Drosophila melanogaster, which can be rescued by parkin, suggesting that both genes play a role in maintaining mitochondrial integrity. Here we demonstrate that an acute down-regulation of parkin in human SH-SY5Y cells severely affects mitochondrial morphology and function, a phenotype comparable with that induced by PINK1 deficiency. Alterations in both mitochondrial morphology and ATP production caused by either parkin or PINK1 loss of function could be rescued by the mitochondrial fusion proteins Mfn2 and OPA1 or by a dominant negative mutant of the fission protein Drp1. Both parkin and PINK1 were able to suppress mitochondrial fragmentation induced by Drp1. Moreover, in Drp1-deficient cells the parkin/PINK1 knockdown phenotype did not occur, indicating that mitochondrial alterations observed in parkin- or PINK1-deficient cells are associated with an increase in mitochondrial fission. Notably, mitochondrial fragmentation is an early phenomenon upon PINK1/parkin silencing that also occurs in primary mouse neurons and Drosophila S2 cells. We propose that the discrepant findings in adult flies can be explained by the time of phenotype analysis and suggest that in mammals different strategies may have evolved to cope with dysfunctional mitochondria.
doi_str_mv 10.1074/jbc.M109.035774
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2755701</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925817307986</els_id><sourcerecordid>67582533</sourcerecordid><originalsourceid>FETCH-LOGICAL-c606t-a78ab50e25fa7f3f2709ffa055a851562e828953f7eed78596215de4950558f63</originalsourceid><addsrcrecordid>eNp1kUtvEzEUhS0EomlhzQ5mgdhN6sd4bG-QUCEQkUIliMTOcjzXicuMHexJK_49jibiscAbS_Z3zz06B6FnBM8JFs3l7cbOrwlWc8y4EM0DNCNYsppx8u0hmmFMSa0ol2foPOdbXE6jyGN0RhRvWkraGVqvYs5VdNWNSd99qGKqbpafPpJqcQh29DFUy2ATmAy5epv2pO5gD6GDMFbXfox2F0OXvOmrRTLboTyb49AT9MiZPsPT032B1ot3X68-1KvP75dXb1a1bXE71kZIs-EYKHdGOOaowMo5gzk3khPeUpBUKs6cAOiE5Kp45h00ihdEupZdoNeT7v6wGaCzZX8yvd4nP5j0U0fj9b8_we_0Nt5pKjgXmBSBVyeBFH8cII968NlC35sA8ZB1K7iknLECXk6gTSWwBO73EoL1sQpdqtDHKvRURZl4_re3P_wp-wK8nICd3-7ufQK98SVQGDSVjWaNplQxWbAXE-ZM1GabfNbrL7R4x6QtB-NCqImAEvWdh6Sz9RAsdEXUjrqL_r8ufwFNq61e</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>67582533</pqid></control><display><type>article</type><title>Loss of Parkin or PINK1 Function Increases Drp1-dependent Mitochondrial Fragmentation</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Lutz, A. Kathrin ; Exner, Nicole ; Fett, Mareike E. ; Schlehe, Julia S. ; Kloos, Karina ; Lämmermann, Kerstin ; Brunner, Bettina ; Kurz-Drexler, Annerose ; Vogel, Frank ; Reichert, Andreas S. ; Bouman, Lena ; Vogt-Weisenhorn, Daniela ; Wurst, Wolfgang ; Tatzelt, Jörg ; Haass, Christian ; Winklhofer, Konstanze F.</creator><creatorcontrib>Lutz, A. Kathrin ; Exner, Nicole ; Fett, Mareike E. ; Schlehe, Julia S. ; Kloos, Karina ; Lämmermann, Kerstin ; Brunner, Bettina ; Kurz-Drexler, Annerose ; Vogel, Frank ; Reichert, Andreas S. ; Bouman, Lena ; Vogt-Weisenhorn, Daniela ; Wurst, Wolfgang ; Tatzelt, Jörg ; Haass, Christian ; Winklhofer, Konstanze F.</creatorcontrib><description>Loss-of-function mutations in the parkin gene (PARK2) and PINK1 gene (PARK6) are associated with autosomal recessive parkinsonism. PINK1 deficiency was recently linked to mitochondrial pathology in human cells and Drosophila melanogaster, which can be rescued by parkin, suggesting that both genes play a role in maintaining mitochondrial integrity. Here we demonstrate that an acute down-regulation of parkin in human SH-SY5Y cells severely affects mitochondrial morphology and function, a phenotype comparable with that induced by PINK1 deficiency. Alterations in both mitochondrial morphology and ATP production caused by either parkin or PINK1 loss of function could be rescued by the mitochondrial fusion proteins Mfn2 and OPA1 or by a dominant negative mutant of the fission protein Drp1. Both parkin and PINK1 were able to suppress mitochondrial fragmentation induced by Drp1. Moreover, in Drp1-deficient cells the parkin/PINK1 knockdown phenotype did not occur, indicating that mitochondrial alterations observed in parkin- or PINK1-deficient cells are associated with an increase in mitochondrial fission. Notably, mitochondrial fragmentation is an early phenomenon upon PINK1/parkin silencing that also occurs in primary mouse neurons and Drosophila S2 cells. We propose that the discrepant findings in adult flies can be explained by the time of phenotype analysis and suggest that in mammals different strategies may have evolved to cope with dysfunctional mitochondria.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.035774</identifier><identifier>PMID: 19546216</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adenosine Triphosphate - metabolism ; Animals ; Apoptosis ; Cell Line ; Cells, Cultured ; Cytoskeletal Proteins - genetics ; Cytoskeletal Proteins - physiology ; Drosophila melanogaster ; Drosophila Proteins - genetics ; Drosophila Proteins - physiology ; GTP-Binding Proteins - genetics ; GTP-Binding Proteins - physiology ; Membrane Proteins - genetics ; Membrane Proteins - physiology ; Mice ; Mice, Inbred C57BL ; Mitochondria - genetics ; Mitochondria - metabolism ; Molecular Basis of Cell and Developmental Biology ; Protein Kinases - genetics ; Protein Kinases - physiology ; Protein-Serine-Threonine Kinases - genetics ; Protein-Serine-Threonine Kinases - physiology ; Reverse Transcriptase Polymerase Chain Reaction ; RNA Interference ; RNA, Small Interfering - genetics ; RNA, Small Interfering - physiology ; Ubiquitin-Protein Ligases - genetics ; Ubiquitin-Protein Ligases - physiology</subject><ispartof>The Journal of biological chemistry, 2009-08, Vol.284 (34), p.22938-22951</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2009 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c606t-a78ab50e25fa7f3f2709ffa055a851562e828953f7eed78596215de4950558f63</citedby><cites>FETCH-LOGICAL-c606t-a78ab50e25fa7f3f2709ffa055a851562e828953f7eed78596215de4950558f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755701/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2755701/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19546216$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lutz, A. Kathrin</creatorcontrib><creatorcontrib>Exner, Nicole</creatorcontrib><creatorcontrib>Fett, Mareike E.</creatorcontrib><creatorcontrib>Schlehe, Julia S.</creatorcontrib><creatorcontrib>Kloos, Karina</creatorcontrib><creatorcontrib>Lämmermann, Kerstin</creatorcontrib><creatorcontrib>Brunner, Bettina</creatorcontrib><creatorcontrib>Kurz-Drexler, Annerose</creatorcontrib><creatorcontrib>Vogel, Frank</creatorcontrib><creatorcontrib>Reichert, Andreas S.</creatorcontrib><creatorcontrib>Bouman, Lena</creatorcontrib><creatorcontrib>Vogt-Weisenhorn, Daniela</creatorcontrib><creatorcontrib>Wurst, Wolfgang</creatorcontrib><creatorcontrib>Tatzelt, Jörg</creatorcontrib><creatorcontrib>Haass, Christian</creatorcontrib><creatorcontrib>Winklhofer, Konstanze F.</creatorcontrib><title>Loss of Parkin or PINK1 Function Increases Drp1-dependent Mitochondrial Fragmentation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Loss-of-function mutations in the parkin gene (PARK2) and PINK1 gene (PARK6) are associated with autosomal recessive parkinsonism. PINK1 deficiency was recently linked to mitochondrial pathology in human cells and Drosophila melanogaster, which can be rescued by parkin, suggesting that both genes play a role in maintaining mitochondrial integrity. Here we demonstrate that an acute down-regulation of parkin in human SH-SY5Y cells severely affects mitochondrial morphology and function, a phenotype comparable with that induced by PINK1 deficiency. Alterations in both mitochondrial morphology and ATP production caused by either parkin or PINK1 loss of function could be rescued by the mitochondrial fusion proteins Mfn2 and OPA1 or by a dominant negative mutant of the fission protein Drp1. Both parkin and PINK1 were able to suppress mitochondrial fragmentation induced by Drp1. Moreover, in Drp1-deficient cells the parkin/PINK1 knockdown phenotype did not occur, indicating that mitochondrial alterations observed in parkin- or PINK1-deficient cells are associated with an increase in mitochondrial fission. Notably, mitochondrial fragmentation is an early phenomenon upon PINK1/parkin silencing that also occurs in primary mouse neurons and Drosophila S2 cells. We propose that the discrepant findings in adult flies can be explained by the time of phenotype analysis and suggest that in mammals different strategies may have evolved to cope with dysfunctional mitochondria.</description><subject>Adenosine Triphosphate - metabolism</subject><subject>Animals</subject><subject>Apoptosis</subject><subject>Cell Line</subject><subject>Cells, Cultured</subject><subject>Cytoskeletal Proteins - genetics</subject><subject>Cytoskeletal Proteins - physiology</subject><subject>Drosophila melanogaster</subject><subject>Drosophila Proteins - genetics</subject><subject>Drosophila Proteins - physiology</subject><subject>GTP-Binding Proteins - genetics</subject><subject>GTP-Binding Proteins - physiology</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - physiology</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mitochondria - genetics</subject><subject>Mitochondria - metabolism</subject><subject>Molecular Basis of Cell and Developmental Biology</subject><subject>Protein Kinases - genetics</subject><subject>Protein Kinases - physiology</subject><subject>Protein-Serine-Threonine Kinases - genetics</subject><subject>Protein-Serine-Threonine Kinases - physiology</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - genetics</subject><subject>RNA, Small Interfering - physiology</subject><subject>Ubiquitin-Protein Ligases - genetics</subject><subject>Ubiquitin-Protein Ligases - physiology</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kUtvEzEUhS0EomlhzQ5mgdhN6sd4bG-QUCEQkUIliMTOcjzXicuMHexJK_49jibiscAbS_Z3zz06B6FnBM8JFs3l7cbOrwlWc8y4EM0DNCNYsppx8u0hmmFMSa0ol2foPOdbXE6jyGN0RhRvWkraGVqvYs5VdNWNSd99qGKqbpafPpJqcQh29DFUy2ATmAy5epv2pO5gD6GDMFbXfox2F0OXvOmrRTLboTyb49AT9MiZPsPT032B1ot3X68-1KvP75dXb1a1bXE71kZIs-EYKHdGOOaowMo5gzk3khPeUpBUKs6cAOiE5Kp45h00ihdEupZdoNeT7v6wGaCzZX8yvd4nP5j0U0fj9b8_we_0Nt5pKjgXmBSBVyeBFH8cII968NlC35sA8ZB1K7iknLECXk6gTSWwBO73EoL1sQpdqtDHKvRURZl4_re3P_wp-wK8nICd3-7ufQK98SVQGDSVjWaNplQxWbAXE-ZM1GabfNbrL7R4x6QtB-NCqImAEvWdh6Sz9RAsdEXUjrqL_r8ufwFNq61e</recordid><startdate>20090821</startdate><enddate>20090821</enddate><creator>Lutz, A. Kathrin</creator><creator>Exner, Nicole</creator><creator>Fett, Mareike E.</creator><creator>Schlehe, Julia S.</creator><creator>Kloos, Karina</creator><creator>Lämmermann, Kerstin</creator><creator>Brunner, Bettina</creator><creator>Kurz-Drexler, Annerose</creator><creator>Vogel, Frank</creator><creator>Reichert, Andreas S.</creator><creator>Bouman, Lena</creator><creator>Vogt-Weisenhorn, Daniela</creator><creator>Wurst, Wolfgang</creator><creator>Tatzelt, Jörg</creator><creator>Haass, Christian</creator><creator>Winklhofer, Konstanze F.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090821</creationdate><title>Loss of Parkin or PINK1 Function Increases Drp1-dependent Mitochondrial Fragmentation</title><author>Lutz, A. Kathrin ; Exner, Nicole ; Fett, Mareike E. ; Schlehe, Julia S. ; Kloos, Karina ; Lämmermann, Kerstin ; Brunner, Bettina ; Kurz-Drexler, Annerose ; Vogel, Frank ; Reichert, Andreas S. ; Bouman, Lena ; Vogt-Weisenhorn, Daniela ; Wurst, Wolfgang ; Tatzelt, Jörg ; Haass, Christian ; Winklhofer, Konstanze F.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c606t-a78ab50e25fa7f3f2709ffa055a851562e828953f7eed78596215de4950558f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adenosine Triphosphate - metabolism</topic><topic>Animals</topic><topic>Apoptosis</topic><topic>Cell Line</topic><topic>Cells, Cultured</topic><topic>Cytoskeletal Proteins - genetics</topic><topic>Cytoskeletal Proteins - physiology</topic><topic>Drosophila melanogaster</topic><topic>Drosophila Proteins - genetics</topic><topic>Drosophila Proteins - physiology</topic><topic>GTP-Binding Proteins - genetics</topic><topic>GTP-Binding Proteins - physiology</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - physiology</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mitochondria - genetics</topic><topic>Mitochondria - metabolism</topic><topic>Molecular Basis of Cell and Developmental Biology</topic><topic>Protein Kinases - genetics</topic><topic>Protein Kinases - physiology</topic><topic>Protein-Serine-Threonine Kinases - genetics</topic><topic>Protein-Serine-Threonine Kinases - physiology</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - genetics</topic><topic>RNA, Small Interfering - physiology</topic><topic>Ubiquitin-Protein Ligases - genetics</topic><topic>Ubiquitin-Protein Ligases - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lutz, A. Kathrin</creatorcontrib><creatorcontrib>Exner, Nicole</creatorcontrib><creatorcontrib>Fett, Mareike E.</creatorcontrib><creatorcontrib>Schlehe, Julia S.</creatorcontrib><creatorcontrib>Kloos, Karina</creatorcontrib><creatorcontrib>Lämmermann, Kerstin</creatorcontrib><creatorcontrib>Brunner, Bettina</creatorcontrib><creatorcontrib>Kurz-Drexler, Annerose</creatorcontrib><creatorcontrib>Vogel, Frank</creatorcontrib><creatorcontrib>Reichert, Andreas S.</creatorcontrib><creatorcontrib>Bouman, Lena</creatorcontrib><creatorcontrib>Vogt-Weisenhorn, Daniela</creatorcontrib><creatorcontrib>Wurst, Wolfgang</creatorcontrib><creatorcontrib>Tatzelt, Jörg</creatorcontrib><creatorcontrib>Haass, Christian</creatorcontrib><creatorcontrib>Winklhofer, Konstanze F.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lutz, A. Kathrin</au><au>Exner, Nicole</au><au>Fett, Mareike E.</au><au>Schlehe, Julia S.</au><au>Kloos, Karina</au><au>Lämmermann, Kerstin</au><au>Brunner, Bettina</au><au>Kurz-Drexler, Annerose</au><au>Vogel, Frank</au><au>Reichert, Andreas S.</au><au>Bouman, Lena</au><au>Vogt-Weisenhorn, Daniela</au><au>Wurst, Wolfgang</au><au>Tatzelt, Jörg</au><au>Haass, Christian</au><au>Winklhofer, Konstanze F.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Loss of Parkin or PINK1 Function Increases Drp1-dependent Mitochondrial Fragmentation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-08-21</date><risdate>2009</risdate><volume>284</volume><issue>34</issue><spage>22938</spage><epage>22951</epage><pages>22938-22951</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Loss-of-function mutations in the parkin gene (PARK2) and PINK1 gene (PARK6) are associated with autosomal recessive parkinsonism. PINK1 deficiency was recently linked to mitochondrial pathology in human cells and Drosophila melanogaster, which can be rescued by parkin, suggesting that both genes play a role in maintaining mitochondrial integrity. Here we demonstrate that an acute down-regulation of parkin in human SH-SY5Y cells severely affects mitochondrial morphology and function, a phenotype comparable with that induced by PINK1 deficiency. Alterations in both mitochondrial morphology and ATP production caused by either parkin or PINK1 loss of function could be rescued by the mitochondrial fusion proteins Mfn2 and OPA1 or by a dominant negative mutant of the fission protein Drp1. Both parkin and PINK1 were able to suppress mitochondrial fragmentation induced by Drp1. Moreover, in Drp1-deficient cells the parkin/PINK1 knockdown phenotype did not occur, indicating that mitochondrial alterations observed in parkin- or PINK1-deficient cells are associated with an increase in mitochondrial fission. Notably, mitochondrial fragmentation is an early phenomenon upon PINK1/parkin silencing that also occurs in primary mouse neurons and Drosophila S2 cells. We propose that the discrepant findings in adult flies can be explained by the time of phenotype analysis and suggest that in mammals different strategies may have evolved to cope with dysfunctional mitochondria.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19546216</pmid><doi>10.1074/jbc.M109.035774</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-08, Vol.284 (34), p.22938-22951
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2755701
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Adenosine Triphosphate - metabolism
Animals
Apoptosis
Cell Line
Cells, Cultured
Cytoskeletal Proteins - genetics
Cytoskeletal Proteins - physiology
Drosophila melanogaster
Drosophila Proteins - genetics
Drosophila Proteins - physiology
GTP-Binding Proteins - genetics
GTP-Binding Proteins - physiology
Membrane Proteins - genetics
Membrane Proteins - physiology
Mice
Mice, Inbred C57BL
Mitochondria - genetics
Mitochondria - metabolism
Molecular Basis of Cell and Developmental Biology
Protein Kinases - genetics
Protein Kinases - physiology
Protein-Serine-Threonine Kinases - genetics
Protein-Serine-Threonine Kinases - physiology
Reverse Transcriptase Polymerase Chain Reaction
RNA Interference
RNA, Small Interfering - genetics
RNA, Small Interfering - physiology
Ubiquitin-Protein Ligases - genetics
Ubiquitin-Protein Ligases - physiology
title Loss of Parkin or PINK1 Function Increases Drp1-dependent Mitochondrial Fragmentation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-21T16%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Loss%20of%20Parkin%20or%20PINK1%20Function%20Increases%20Drp1-dependent%20Mitochondrial%20Fragmentation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Lutz,%20A.%20Kathrin&rft.date=2009-08-21&rft.volume=284&rft.issue=34&rft.spage=22938&rft.epage=22951&rft.pages=22938-22951&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.035774&rft_dat=%3Cproquest_pubme%3E67582533%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=67582533&rft_id=info:pmid/19546216&rft_els_id=S0021925817307986&rfr_iscdi=true