Engineering Endochondral Bone: In Vivo Studies
The use of biomaterials to replace lost bone has been a common practice for decades. More recently, the demands for bone repair and regeneration have pushed research into the use of cultured cells and growth factors in association with these materials. Here we report a novel approach to engineer new...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2009-03, Vol.15 (3), p.635-643 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 643 |
---|---|
container_issue | 3 |
container_start_page | 635 |
container_title | Tissue engineering. Part A |
container_volume | 15 |
creator | Oliveira, Serafim M. Mijares, Dindo Q. Turner, Gloria Amaral, Isabel F. Barbosa, Mário A. Teixeira, Cristina C. |
description | The use of biomaterials to replace lost bone has been a common practice for decades. More recently, the demands for bone repair and regeneration have pushed research into the use of cultured cells and growth factors in association with these materials. Here we report a novel approach to engineer new bone using a transient cartilage scaffold to induce endochondral ossification. Chondrocyte/chitosan scaffolds (both a transient cartilage scaffold—experimental—and a permanent cartilage scaffold—control) were prepared and implanted subcutaneously in nude mice. Bone formation was evaluated over a period of 5 months. Mineralization was assessed by Faxitron, micro computed tomography, backscatter electrons, and Fourier transform infrared spectroscopy analyses. Histological analysis provided further information on tissue changes in and around the implanted scaffolds. The deposition of ectopic bone was detected in the surface of the experimental implants as early as 1 month after implantation. After 3 months, bone trabeculae and bone marrow cavities were formed inside the scaffolds. The bone deposited was similar to the bone of the mice vertebra. Interestingly, no bone formation was observed in control implants. In conclusion, an engineered transient cartilage template carries all the signals necessary to induce endochondral bone formation
in vivo
. |
doi_str_mv | 10.1089/ten.tea.2008.0052 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2751848</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20525429</sourcerecordid><originalsourceid>FETCH-LOGICAL-c459t-4d9e5b829b6b18b2d992202f5ef72d264fe7f8eab13ce641d010a39a0eec07f53</originalsourceid><addsrcrecordid>eNqNkUtPxCAUhYnR-P4BbkzduJsKtBRwYaKT8ZGYuPARd4S2tyOTDozQTuK_l3Emvja6IBD47rmXcxA6IDglWMiTDmzagU4pxiLFmNE1tE1kxgdZxp7XP8852UI7IUwwLnDB-SbaIoIzWfBsG6UjOzYWwBs7Tka2dtWLs7XXbXLhLJwmNzZ5MnOX3Hd9bSDsoY1GtwH2V_suerwcPQyvB7d3VzfD89tBlTPZDfJaAisFlWVRElHSWkpKMW0YNJzWtMgb4I0AXZKsgiInNSZYZ1JjgArzhmW76GypO-vLKdQV2C7OpGbeTLV_U04b9fPFmhc1dnNFOSMiF1HgeCXg3WsPoVNTEypoW23B9UEVPLqRC_4nSKOtLKcygke_wInrvY0uKCEJY-SjK1kylXcheGg-JyZYLSJTMbK4tFpEphaRxZrD71_9qlhlFAG-BBbX2trWQAm--4f0O8LCpgc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>89155148</pqid></control><display><type>article</type><title>Engineering Endochondral Bone: In Vivo Studies</title><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Oliveira, Serafim M. ; Mijares, Dindo Q. ; Turner, Gloria ; Amaral, Isabel F. ; Barbosa, Mário A. ; Teixeira, Cristina C.</creator><creatorcontrib>Oliveira, Serafim M. ; Mijares, Dindo Q. ; Turner, Gloria ; Amaral, Isabel F. ; Barbosa, Mário A. ; Teixeira, Cristina C.</creatorcontrib><description>The use of biomaterials to replace lost bone has been a common practice for decades. More recently, the demands for bone repair and regeneration have pushed research into the use of cultured cells and growth factors in association with these materials. Here we report a novel approach to engineer new bone using a transient cartilage scaffold to induce endochondral ossification. Chondrocyte/chitosan scaffolds (both a transient cartilage scaffold—experimental—and a permanent cartilage scaffold—control) were prepared and implanted subcutaneously in nude mice. Bone formation was evaluated over a period of 5 months. Mineralization was assessed by Faxitron, micro computed tomography, backscatter electrons, and Fourier transform infrared spectroscopy analyses. Histological analysis provided further information on tissue changes in and around the implanted scaffolds. The deposition of ectopic bone was detected in the surface of the experimental implants as early as 1 month after implantation. After 3 months, bone trabeculae and bone marrow cavities were formed inside the scaffolds. The bone deposited was similar to the bone of the mice vertebra. Interestingly, no bone formation was observed in control implants. In conclusion, an engineered transient cartilage template carries all the signals necessary to induce endochondral bone formation
in vivo
.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2008.0052</identifier><identifier>PMID: 18759673</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Biomedical materials ; Bone and Bones - drug effects ; Bone and Bones - physiology ; Bones ; Calcification, Physiologic - drug effects ; Cartilage ; Cartilage - drug effects ; Cartilage - physiology ; Cellular biology ; Chick Embryo ; Chitosan - pharmacology ; Chondrocytes - cytology ; Chondrocytes - drug effects ; Male ; Mice ; Mice, Nude ; Microscopy, Electron, Scanning ; Minerals - metabolism ; Original Papers ; Prosthesis Implantation ; Spectroscopy, Fourier Transform Infrared ; Tissue engineering ; Tissue Engineering - methods ; Tissue Scaffolds</subject><ispartof>Tissue engineering. Part A, 2009-03, Vol.15 (3), p.635-643</ispartof><rights>2009, Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2009, Mary Ann Liebert, Inc.</rights><rights>Copyright 2009, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c459t-4d9e5b829b6b18b2d992202f5ef72d264fe7f8eab13ce641d010a39a0eec07f53</citedby><cites>FETCH-LOGICAL-c459t-4d9e5b829b6b18b2d992202f5ef72d264fe7f8eab13ce641d010a39a0eec07f53</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18759673$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Oliveira, Serafim M.</creatorcontrib><creatorcontrib>Mijares, Dindo Q.</creatorcontrib><creatorcontrib>Turner, Gloria</creatorcontrib><creatorcontrib>Amaral, Isabel F.</creatorcontrib><creatorcontrib>Barbosa, Mário A.</creatorcontrib><creatorcontrib>Teixeira, Cristina C.</creatorcontrib><title>Engineering Endochondral Bone: In Vivo Studies</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>The use of biomaterials to replace lost bone has been a common practice for decades. More recently, the demands for bone repair and regeneration have pushed research into the use of cultured cells and growth factors in association with these materials. Here we report a novel approach to engineer new bone using a transient cartilage scaffold to induce endochondral ossification. Chondrocyte/chitosan scaffolds (both a transient cartilage scaffold—experimental—and a permanent cartilage scaffold—control) were prepared and implanted subcutaneously in nude mice. Bone formation was evaluated over a period of 5 months. Mineralization was assessed by Faxitron, micro computed tomography, backscatter electrons, and Fourier transform infrared spectroscopy analyses. Histological analysis provided further information on tissue changes in and around the implanted scaffolds. The deposition of ectopic bone was detected in the surface of the experimental implants as early as 1 month after implantation. After 3 months, bone trabeculae and bone marrow cavities were formed inside the scaffolds. The bone deposited was similar to the bone of the mice vertebra. Interestingly, no bone formation was observed in control implants. In conclusion, an engineered transient cartilage template carries all the signals necessary to induce endochondral bone formation
in vivo
.</description><subject>Animals</subject><subject>Biomedical materials</subject><subject>Bone and Bones - drug effects</subject><subject>Bone and Bones - physiology</subject><subject>Bones</subject><subject>Calcification, Physiologic - drug effects</subject><subject>Cartilage</subject><subject>Cartilage - drug effects</subject><subject>Cartilage - physiology</subject><subject>Cellular biology</subject><subject>Chick Embryo</subject><subject>Chitosan - pharmacology</subject><subject>Chondrocytes - cytology</subject><subject>Chondrocytes - drug effects</subject><subject>Male</subject><subject>Mice</subject><subject>Mice, Nude</subject><subject>Microscopy, Electron, Scanning</subject><subject>Minerals - metabolism</subject><subject>Original Papers</subject><subject>Prosthesis Implantation</subject><subject>Spectroscopy, Fourier Transform Infrared</subject><subject>Tissue engineering</subject><subject>Tissue Engineering - methods</subject><subject>Tissue Scaffolds</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkUtPxCAUhYnR-P4BbkzduJsKtBRwYaKT8ZGYuPARd4S2tyOTDozQTuK_l3Emvja6IBD47rmXcxA6IDglWMiTDmzagU4pxiLFmNE1tE1kxgdZxp7XP8852UI7IUwwLnDB-SbaIoIzWfBsG6UjOzYWwBs7Tka2dtWLs7XXbXLhLJwmNzZ5MnOX3Hd9bSDsoY1GtwH2V_suerwcPQyvB7d3VzfD89tBlTPZDfJaAisFlWVRElHSWkpKMW0YNJzWtMgb4I0AXZKsgiInNSZYZ1JjgArzhmW76GypO-vLKdQV2C7OpGbeTLV_U04b9fPFmhc1dnNFOSMiF1HgeCXg3WsPoVNTEypoW23B9UEVPLqRC_4nSKOtLKcygke_wInrvY0uKCEJY-SjK1kylXcheGg-JyZYLSJTMbK4tFpEphaRxZrD71_9qlhlFAG-BBbX2trWQAm--4f0O8LCpgc</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Oliveira, Serafim M.</creator><creator>Mijares, Dindo Q.</creator><creator>Turner, Gloria</creator><creator>Amaral, Isabel F.</creator><creator>Barbosa, Mário A.</creator><creator>Teixeira, Cristina C.</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090301</creationdate><title>Engineering Endochondral Bone: In Vivo Studies</title><author>Oliveira, Serafim M. ; Mijares, Dindo Q. ; Turner, Gloria ; Amaral, Isabel F. ; Barbosa, Mário A. ; Teixeira, Cristina C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c459t-4d9e5b829b6b18b2d992202f5ef72d264fe7f8eab13ce641d010a39a0eec07f53</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biomedical materials</topic><topic>Bone and Bones - drug effects</topic><topic>Bone and Bones - physiology</topic><topic>Bones</topic><topic>Calcification, Physiologic - drug effects</topic><topic>Cartilage</topic><topic>Cartilage - drug effects</topic><topic>Cartilage - physiology</topic><topic>Cellular biology</topic><topic>Chick Embryo</topic><topic>Chitosan - pharmacology</topic><topic>Chondrocytes - cytology</topic><topic>Chondrocytes - drug effects</topic><topic>Male</topic><topic>Mice</topic><topic>Mice, Nude</topic><topic>Microscopy, Electron, Scanning</topic><topic>Minerals - metabolism</topic><topic>Original Papers</topic><topic>Prosthesis Implantation</topic><topic>Spectroscopy, Fourier Transform Infrared</topic><topic>Tissue engineering</topic><topic>Tissue Engineering - methods</topic><topic>Tissue Scaffolds</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Oliveira, Serafim M.</creatorcontrib><creatorcontrib>Mijares, Dindo Q.</creatorcontrib><creatorcontrib>Turner, Gloria</creatorcontrib><creatorcontrib>Amaral, Isabel F.</creatorcontrib><creatorcontrib>Barbosa, Mário A.</creatorcontrib><creatorcontrib>Teixeira, Cristina C.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Oliveira, Serafim M.</au><au>Mijares, Dindo Q.</au><au>Turner, Gloria</au><au>Amaral, Isabel F.</au><au>Barbosa, Mário A.</au><au>Teixeira, Cristina C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Engineering Endochondral Bone: In Vivo Studies</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>15</volume><issue>3</issue><spage>635</spage><epage>643</epage><pages>635-643</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>The use of biomaterials to replace lost bone has been a common practice for decades. More recently, the demands for bone repair and regeneration have pushed research into the use of cultured cells and growth factors in association with these materials. Here we report a novel approach to engineer new bone using a transient cartilage scaffold to induce endochondral ossification. Chondrocyte/chitosan scaffolds (both a transient cartilage scaffold—experimental—and a permanent cartilage scaffold—control) were prepared and implanted subcutaneously in nude mice. Bone formation was evaluated over a period of 5 months. Mineralization was assessed by Faxitron, micro computed tomography, backscatter electrons, and Fourier transform infrared spectroscopy analyses. Histological analysis provided further information on tissue changes in and around the implanted scaffolds. The deposition of ectopic bone was detected in the surface of the experimental implants as early as 1 month after implantation. After 3 months, bone trabeculae and bone marrow cavities were formed inside the scaffolds. The bone deposited was similar to the bone of the mice vertebra. Interestingly, no bone formation was observed in control implants. In conclusion, an engineered transient cartilage template carries all the signals necessary to induce endochondral bone formation
in vivo
.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>18759673</pmid><doi>10.1089/ten.tea.2008.0052</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3341 |
ispartof | Tissue engineering. Part A, 2009-03, Vol.15 (3), p.635-643 |
issn | 1937-3341 1937-335X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2751848 |
source | MEDLINE; Alma/SFX Local Collection |
subjects | Animals Biomedical materials Bone and Bones - drug effects Bone and Bones - physiology Bones Calcification, Physiologic - drug effects Cartilage Cartilage - drug effects Cartilage - physiology Cellular biology Chick Embryo Chitosan - pharmacology Chondrocytes - cytology Chondrocytes - drug effects Male Mice Mice, Nude Microscopy, Electron, Scanning Minerals - metabolism Original Papers Prosthesis Implantation Spectroscopy, Fourier Transform Infrared Tissue engineering Tissue Engineering - methods Tissue Scaffolds |
title | Engineering Endochondral Bone: In Vivo Studies |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T20%3A43%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Engineering%20Endochondral%20Bone:%20In%20Vivo%20Studies&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Oliveira,%20Serafim%20M.&rft.date=2009-03-01&rft.volume=15&rft.issue=3&rft.spage=635&rft.epage=643&rft.pages=635-643&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2008.0052&rft_dat=%3Cproquest_pubme%3E20525429%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=89155148&rft_id=info:pmid/18759673&rfr_iscdi=true |