Olfactory perireceptor and receptor events in moths: a kinetic model revised

Modelling reveals that within about 3 ms after entering the sensillum lymph, 17% of total pheromone is enzymatically degraded while 83% is bound to the pheromone-binding protein (PBP) and thereby largely protected from enzymatic degradation. The latter proceeds within minutes, 20,000-fold more slowl...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Comparative Physiology 2009-10, Vol.195 (10), p.895-922
1. Verfasser: Kaissling, Karl-Ernst
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 922
container_issue 10
container_start_page 895
container_title Journal of Comparative Physiology
container_volume 195
creator Kaissling, Karl-Ernst
description Modelling reveals that within about 3 ms after entering the sensillum lymph, 17% of total pheromone is enzymatically degraded while 83% is bound to the pheromone-binding protein (PBP) and thereby largely protected from enzymatic degradation. The latter proceeds within minutes, 20,000-fold more slowly than with the free pheromone. In vivo the complex pheromone–PBP interacts with the receptor molecule. At weak stimulation the half-life of the active complex is 0.8 s due to the postulated pheromone deactivation. Most likely this process is enzymatically catalysed; it changes the PBP into a scavenger form, possibly by interference with the C-terminus. The indirectly determined PBP concentration (3.8 mM) is close to direct measurements. The calculated density of receptor molecules within the plasma membrane of the receptor neuron reaches up to 6,000 units per μm 2 . This is compared with the estimated densities of the sensory-neuron membrane protein and of ion channels. The EC 50 of the model pheromone–PBP complex interacting with the receptor molecules is 6.8 μM, as compared with the EC 50  = 1.5 μM of bombykol recently determined using heterologous expression. A possible mechanism widening the range of stimulus intensities covered by the dose–response curve of the receptor-potential is proposed.
doi_str_mv 10.1007/s00359-009-0461-4
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2749182</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1895706321</sourcerecordid><originalsourceid>FETCH-LOGICAL-c565t-2f74774bbcb1c9553d1a78dac1f0b8b84e04fa9d28b723992262a429ad9ac4f63</originalsourceid><addsrcrecordid>eNp9kcFOGzEQhq2qqAmBB-CCVj20py1j79hec0BCqLSVInGBs-X1esFhsxvs3Ui8fR0lSgoSPVij8Xzze8Y_IWcUflAAeREBCq5ygHRQ0Bw_kSnFguW04PQzmUKBkEuucEKOY1wAAKOMfiETqoSSgMWUzO_axtihD6_ZygUfnHWrlGWmq7N94tauG2Lmu2zZD0_xMjPZs-_c4G26qF2byLWPrj4hR41pozvdxRl5uP15f_M7n9_9-nNzPc8tF3zIWSNRSqwqW1GrOC9qamRZG0sbqMqqRAfYGFWzspKsUIoxwQwyZWplLDaimJGrre5qrJautmm6YFq9Cn5pwqvujddvK51_0o_9WjOJipYsCXzfCYT-ZXRx0EsfrWtb07l-jLoUUnKQjCfy239JIYVATD7MyNd34KIfQ5e-QTNA5CVTmCC6hWzoYwyu2c9MQW8s1VtLdbJUbyzVm57zf5c9dOw8TADbAjGVukcXDi9_rPoXgoissg</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>204458294</pqid></control><display><type>article</type><title>Olfactory perireceptor and receptor events in moths: a kinetic model revised</title><source>MEDLINE</source><source>SpringerNature Journals</source><creator>Kaissling, Karl-Ernst</creator><creatorcontrib>Kaissling, Karl-Ernst</creatorcontrib><description>Modelling reveals that within about 3 ms after entering the sensillum lymph, 17% of total pheromone is enzymatically degraded while 83% is bound to the pheromone-binding protein (PBP) and thereby largely protected from enzymatic degradation. The latter proceeds within minutes, 20,000-fold more slowly than with the free pheromone. In vivo the complex pheromone–PBP interacts with the receptor molecule. At weak stimulation the half-life of the active complex is 0.8 s due to the postulated pheromone deactivation. Most likely this process is enzymatically catalysed; it changes the PBP into a scavenger form, possibly by interference with the C-terminus. The indirectly determined PBP concentration (3.8 mM) is close to direct measurements. The calculated density of receptor molecules within the plasma membrane of the receptor neuron reaches up to 6,000 units per μm 2 . This is compared with the estimated densities of the sensory-neuron membrane protein and of ion channels. The EC 50 of the model pheromone–PBP complex interacting with the receptor molecules is 6.8 μM, as compared with the EC 50  = 1.5 μM of bombykol recently determined using heterologous expression. A possible mechanism widening the range of stimulus intensities covered by the dose–response curve of the receptor-potential is proposed.</description><identifier>ISSN: 0340-7594</identifier><identifier>EISSN: 1432-1351</identifier><identifier>DOI: 10.1007/s00359-009-0461-4</identifier><identifier>PMID: 19697043</identifier><language>eng</language><publisher>Berlin/Heidelberg: Springer-Verlag</publisher><subject>Animal Physiology ; Animals ; Biological Transport ; Biomedical and Life Sciences ; C-Terminus ; Carrier Proteins - metabolism ; Computer Simulation ; Deactivation ; Fatty Alcohols - metabolism ; Insect Proteins - metabolism ; Ion channels ; Kinetics ; Life Sciences ; Lymph ; Membrane proteins ; Models, Biological ; Molecular modelling ; Moths - physiology ; Neurons ; Neurosciences ; Pheromone-binding protein ; Pheromones ; Pheromones - metabolism ; Plasma membranes ; Protein Conformation ; Receptor density ; Receptors, Odorant - metabolism ; Review ; Signal Transduction ; Smell ; Structure-Activity Relationship ; Zoology</subject><ispartof>Journal of Comparative Physiology, 2009-10, Vol.195 (10), p.895-922</ispartof><rights>The Author(s) 2009</rights><rights>Springer-Verlag 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c565t-2f74774bbcb1c9553d1a78dac1f0b8b84e04fa9d28b723992262a429ad9ac4f63</citedby><cites>FETCH-LOGICAL-c565t-2f74774bbcb1c9553d1a78dac1f0b8b84e04fa9d28b723992262a429ad9ac4f63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s00359-009-0461-4$$EPDF$$P50$$Gspringer$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s00359-009-0461-4$$EHTML$$P50$$Gspringer$$Hfree_for_read</linktohtml><link.rule.ids>230,314,780,784,885,27924,27925,41488,42557,51319</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19697043$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kaissling, Karl-Ernst</creatorcontrib><title>Olfactory perireceptor and receptor events in moths: a kinetic model revised</title><title>Journal of Comparative Physiology</title><addtitle>J Comp Physiol A</addtitle><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><description>Modelling reveals that within about 3 ms after entering the sensillum lymph, 17% of total pheromone is enzymatically degraded while 83% is bound to the pheromone-binding protein (PBP) and thereby largely protected from enzymatic degradation. The latter proceeds within minutes, 20,000-fold more slowly than with the free pheromone. In vivo the complex pheromone–PBP interacts with the receptor molecule. At weak stimulation the half-life of the active complex is 0.8 s due to the postulated pheromone deactivation. Most likely this process is enzymatically catalysed; it changes the PBP into a scavenger form, possibly by interference with the C-terminus. The indirectly determined PBP concentration (3.8 mM) is close to direct measurements. The calculated density of receptor molecules within the plasma membrane of the receptor neuron reaches up to 6,000 units per μm 2 . This is compared with the estimated densities of the sensory-neuron membrane protein and of ion channels. The EC 50 of the model pheromone–PBP complex interacting with the receptor molecules is 6.8 μM, as compared with the EC 50  = 1.5 μM of bombykol recently determined using heterologous expression. A possible mechanism widening the range of stimulus intensities covered by the dose–response curve of the receptor-potential is proposed.</description><subject>Animal Physiology</subject><subject>Animals</subject><subject>Biological Transport</subject><subject>Biomedical and Life Sciences</subject><subject>C-Terminus</subject><subject>Carrier Proteins - metabolism</subject><subject>Computer Simulation</subject><subject>Deactivation</subject><subject>Fatty Alcohols - metabolism</subject><subject>Insect Proteins - metabolism</subject><subject>Ion channels</subject><subject>Kinetics</subject><subject>Life Sciences</subject><subject>Lymph</subject><subject>Membrane proteins</subject><subject>Models, Biological</subject><subject>Molecular modelling</subject><subject>Moths - physiology</subject><subject>Neurons</subject><subject>Neurosciences</subject><subject>Pheromone-binding protein</subject><subject>Pheromones</subject><subject>Pheromones - metabolism</subject><subject>Plasma membranes</subject><subject>Protein Conformation</subject><subject>Receptor density</subject><subject>Receptors, Odorant - metabolism</subject><subject>Review</subject><subject>Signal Transduction</subject><subject>Smell</subject><subject>Structure-Activity Relationship</subject><subject>Zoology</subject><issn>0340-7594</issn><issn>1432-1351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>C6C</sourceid><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNp9kcFOGzEQhq2qqAmBB-CCVj20py1j79hec0BCqLSVInGBs-X1esFhsxvs3Ui8fR0lSgoSPVij8Xzze8Y_IWcUflAAeREBCq5ygHRQ0Bw_kSnFguW04PQzmUKBkEuucEKOY1wAAKOMfiETqoSSgMWUzO_axtihD6_ZygUfnHWrlGWmq7N94tauG2Lmu2zZD0_xMjPZs-_c4G26qF2byLWPrj4hR41pozvdxRl5uP15f_M7n9_9-nNzPc8tF3zIWSNRSqwqW1GrOC9qamRZG0sbqMqqRAfYGFWzspKsUIoxwQwyZWplLDaimJGrre5qrJautmm6YFq9Cn5pwqvujddvK51_0o_9WjOJipYsCXzfCYT-ZXRx0EsfrWtb07l-jLoUUnKQjCfy239JIYVATD7MyNd34KIfQ5e-QTNA5CVTmCC6hWzoYwyu2c9MQW8s1VtLdbJUbyzVm57zf5c9dOw8TADbAjGVukcXDi9_rPoXgoissg</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Kaissling, Karl-Ernst</creator><general>Springer-Verlag</general><general>Springer Nature B.V</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7U7</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20091001</creationdate><title>Olfactory perireceptor and receptor events in moths: a kinetic model revised</title><author>Kaissling, Karl-Ernst</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c565t-2f74774bbcb1c9553d1a78dac1f0b8b84e04fa9d28b723992262a429ad9ac4f63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animal Physiology</topic><topic>Animals</topic><topic>Biological Transport</topic><topic>Biomedical and Life Sciences</topic><topic>C-Terminus</topic><topic>Carrier Proteins - metabolism</topic><topic>Computer Simulation</topic><topic>Deactivation</topic><topic>Fatty Alcohols - metabolism</topic><topic>Insect Proteins - metabolism</topic><topic>Ion channels</topic><topic>Kinetics</topic><topic>Life Sciences</topic><topic>Lymph</topic><topic>Membrane proteins</topic><topic>Models, Biological</topic><topic>Molecular modelling</topic><topic>Moths - physiology</topic><topic>Neurons</topic><topic>Neurosciences</topic><topic>Pheromone-binding protein</topic><topic>Pheromones</topic><topic>Pheromones - metabolism</topic><topic>Plasma membranes</topic><topic>Protein Conformation</topic><topic>Receptor density</topic><topic>Receptors, Odorant - metabolism</topic><topic>Review</topic><topic>Signal Transduction</topic><topic>Smell</topic><topic>Structure-Activity Relationship</topic><topic>Zoology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kaissling, Karl-Ernst</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Comparative Physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kaissling, Karl-Ernst</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Olfactory perireceptor and receptor events in moths: a kinetic model revised</atitle><jtitle>Journal of Comparative Physiology</jtitle><stitle>J Comp Physiol A</stitle><addtitle>J Comp Physiol A Neuroethol Sens Neural Behav Physiol</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>195</volume><issue>10</issue><spage>895</spage><epage>922</epage><pages>895-922</pages><issn>0340-7594</issn><eissn>1432-1351</eissn><abstract>Modelling reveals that within about 3 ms after entering the sensillum lymph, 17% of total pheromone is enzymatically degraded while 83% is bound to the pheromone-binding protein (PBP) and thereby largely protected from enzymatic degradation. The latter proceeds within minutes, 20,000-fold more slowly than with the free pheromone. In vivo the complex pheromone–PBP interacts with the receptor molecule. At weak stimulation the half-life of the active complex is 0.8 s due to the postulated pheromone deactivation. Most likely this process is enzymatically catalysed; it changes the PBP into a scavenger form, possibly by interference with the C-terminus. The indirectly determined PBP concentration (3.8 mM) is close to direct measurements. The calculated density of receptor molecules within the plasma membrane of the receptor neuron reaches up to 6,000 units per μm 2 . This is compared with the estimated densities of the sensory-neuron membrane protein and of ion channels. The EC 50 of the model pheromone–PBP complex interacting with the receptor molecules is 6.8 μM, as compared with the EC 50  = 1.5 μM of bombykol recently determined using heterologous expression. A possible mechanism widening the range of stimulus intensities covered by the dose–response curve of the receptor-potential is proposed.</abstract><cop>Berlin/Heidelberg</cop><pub>Springer-Verlag</pub><pmid>19697043</pmid><doi>10.1007/s00359-009-0461-4</doi><tpages>28</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0340-7594
ispartof Journal of Comparative Physiology, 2009-10, Vol.195 (10), p.895-922
issn 0340-7594
1432-1351
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2749182
source MEDLINE; SpringerNature Journals
subjects Animal Physiology
Animals
Biological Transport
Biomedical and Life Sciences
C-Terminus
Carrier Proteins - metabolism
Computer Simulation
Deactivation
Fatty Alcohols - metabolism
Insect Proteins - metabolism
Ion channels
Kinetics
Life Sciences
Lymph
Membrane proteins
Models, Biological
Molecular modelling
Moths - physiology
Neurons
Neurosciences
Pheromone-binding protein
Pheromones
Pheromones - metabolism
Plasma membranes
Protein Conformation
Receptor density
Receptors, Odorant - metabolism
Review
Signal Transduction
Smell
Structure-Activity Relationship
Zoology
title Olfactory perireceptor and receptor events in moths: a kinetic model revised
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T16%3A44%3A20IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Olfactory%20perireceptor%20and%20receptor%20events%20in%20moths:%20a%20kinetic%20model%20revised&rft.jtitle=Journal%20of%20Comparative%20Physiology&rft.au=Kaissling,%20Karl-Ernst&rft.date=2009-10-01&rft.volume=195&rft.issue=10&rft.spage=895&rft.epage=922&rft.pages=895-922&rft.issn=0340-7594&rft.eissn=1432-1351&rft_id=info:doi/10.1007/s00359-009-0461-4&rft_dat=%3Cproquest_pubme%3E1895706321%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=204458294&rft_id=info:pmid/19697043&rfr_iscdi=true