Gga2 Mediates Sequential Ubiquitin-independent and Ubiquitin-dependent Steps in the Trafficking of ARN1 from the trans-Golgi Network to the Vacuole

In Saccharomyces cerevisiae, ARN1 encodes a transporter for the uptake of ferrichrome, an important nutritional source of iron. In the absence of ferrichrome, Arn1p is sorted directly from the trans-Golgi network (TGN) to the vacuolar lumen via the vacuolar protein-sorting pathway. Arn1p is mis-sort...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-08, Vol.284 (35), p.23830-23841
Hauptverfasser: Deng, Yi, Guo, Yan, Watson, Hadiya, Au, Wei-Chun, Shakoury-Elizeh, Minoo, Basrai, Munira A., Bonifacino, Juan S., Philpott, Caroline C.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 23841
container_issue 35
container_start_page 23830
container_title The Journal of biological chemistry
container_volume 284
creator Deng, Yi
Guo, Yan
Watson, Hadiya
Au, Wei-Chun
Shakoury-Elizeh, Minoo
Basrai, Munira A.
Bonifacino, Juan S.
Philpott, Caroline C.
description In Saccharomyces cerevisiae, ARN1 encodes a transporter for the uptake of ferrichrome, an important nutritional source of iron. In the absence of ferrichrome, Arn1p is sorted directly from the trans-Golgi network (TGN) to the vacuolar lumen via the vacuolar protein-sorting pathway. Arn1p is mis-sorted to the plasma membrane in cells lacking Gga2p, a monomeric clathrin-adaptor protein involved in vesicular transport from the TGN. Although Ggas have been characterized as ubiquitin receptors, we show here that ubiquitin binding by Gga2 was not required for the TGN-to-endosome trafficking of Arn1, but it was required for subsequent sorting of Arn1 into the multivesicular body. In a ubiquitin-binding mutant of Gga2, Arn1p accumulated on the vacuolar membrane in a ubiquitinated form. The yeast epsins Ent3p and Ent4p were also involved in TGN-to-vacuole sorting of Arn1p. Amino-terminal sequences of Arn1p were required for vacuolar protein sorting, as mutation of ubiquitinatable lysine residues resulted in accumulation on the vacuolar membrane, and mutation of either a THN or YGL sequence resulted in mis-sorting to the plasma membrane. These studies suggest that Gga2 is involved in sorting at both the TGN and multivesicular body and that the first step can occur without ubiquitin binding.
doi_str_mv 10.1074/jbc.M109.030015
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2749155</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925818608105</els_id><sourcerecordid>21264650</sourcerecordid><originalsourceid>FETCH-LOGICAL-c525t-2386ac6e1827dd53ff43b3486015904da26b1dc867d0dca0fcd3bd22841a49583</originalsourceid><addsrcrecordid>eNqFkk9vFCEYxidGY2v17E05GG-z5c_AzFxMmkZXk7Ymbtd4Iwy8M0s7C1tg2_g5_MKynY2tByMHSHh-vLw8D0XxmuAZwXV1fNXp2TnB7QwzjAl_UhwS3LCScfLjaXGIMSVlS3lzULyI8QrnUbXkeXFAWl5XlIrD4td8UBSdg7EqQUQLuNmCS1aNaNnZm61N1pXWGdhAnlxCyplHysP-IsEmIutQWgG6DKrvrb62bkC-RyffLgjqg1_fiykoF8u5HweLLiDd-XCNkr-Xviu99SO8LJ71aozwar8eFctPHy9PP5dnX-dfTk_OSs0pTyVljVBaAGlobQxnfV-xjlWNyEa0uDKKio4Y3YjaYKMV7rVhnaG0qYiqWt6wo-LDVHez7dZgdH5HUKPcBLtW4af0ysq_FWdXcvC3ktbZRs5zgff7AsFn32KSaxs1jKNy4LdRipq3jIv2vyAlVFSC4wweT6AOPsYA_Z9uCJa7xGVOXO4Sl1Pi-cSbx4944PcRZ-DdBKzssLqzAWRnvV7BWmYnJOMy-8h2N7-dsF55qYZgo1wuKCYMEyGaFtNMtBMBOZNbC0FGbcHp_HcC6CSNt__s8jcx_NHK</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21264650</pqid></control><display><type>article</type><title>Gga2 Mediates Sequential Ubiquitin-independent and Ubiquitin-dependent Steps in the Trafficking of ARN1 from the trans-Golgi Network to the Vacuole</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Deng, Yi ; Guo, Yan ; Watson, Hadiya ; Au, Wei-Chun ; Shakoury-Elizeh, Minoo ; Basrai, Munira A. ; Bonifacino, Juan S. ; Philpott, Caroline C.</creator><creatorcontrib>Deng, Yi ; Guo, Yan ; Watson, Hadiya ; Au, Wei-Chun ; Shakoury-Elizeh, Minoo ; Basrai, Munira A. ; Bonifacino, Juan S. ; Philpott, Caroline C.</creatorcontrib><description>In Saccharomyces cerevisiae, ARN1 encodes a transporter for the uptake of ferrichrome, an important nutritional source of iron. In the absence of ferrichrome, Arn1p is sorted directly from the trans-Golgi network (TGN) to the vacuolar lumen via the vacuolar protein-sorting pathway. Arn1p is mis-sorted to the plasma membrane in cells lacking Gga2p, a monomeric clathrin-adaptor protein involved in vesicular transport from the TGN. Although Ggas have been characterized as ubiquitin receptors, we show here that ubiquitin binding by Gga2 was not required for the TGN-to-endosome trafficking of Arn1, but it was required for subsequent sorting of Arn1 into the multivesicular body. In a ubiquitin-binding mutant of Gga2, Arn1p accumulated on the vacuolar membrane in a ubiquitinated form. The yeast epsins Ent3p and Ent4p were also involved in TGN-to-vacuole sorting of Arn1p. Amino-terminal sequences of Arn1p were required for vacuolar protein sorting, as mutation of ubiquitinatable lysine residues resulted in accumulation on the vacuolar membrane, and mutation of either a THN or YGL sequence resulted in mis-sorting to the plasma membrane. These studies suggest that Gga2 is involved in sorting at both the TGN and multivesicular body and that the first step can occur without ubiquitin binding.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.030015</identifier><identifier>PMID: 19574226</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Adaptor Proteins, Vesicular Transport - chemistry ; Adaptor Proteins, Vesicular Transport - genetics ; Adaptor Proteins, Vesicular Transport - metabolism ; Amino Acid Sequence ; Membrane Transport Proteins - chemistry ; Membrane Transport Proteins - genetics ; Membrane Transport Proteins - metabolism ; Molecular Basis of Cell and Developmental Biology ; Molecular Sequence Data ; Protein Binding ; Protein Transport ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - chemistry ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae Proteins - chemistry ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Sequence Alignment ; trans-Golgi Network - chemistry ; trans-Golgi Network - genetics ; trans-Golgi Network - metabolism ; Ubiquitin - metabolism ; Vacuoles - chemistry ; Vacuoles - genetics ; Vacuoles - metabolism</subject><ispartof>The Journal of biological chemistry, 2009-08, Vol.284 (35), p.23830-23841</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2009 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c525t-2386ac6e1827dd53ff43b3486015904da26b1dc867d0dca0fcd3bd22841a49583</citedby><cites>FETCH-LOGICAL-c525t-2386ac6e1827dd53ff43b3486015904da26b1dc867d0dca0fcd3bd22841a49583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749155/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2749155/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19574226$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Deng, Yi</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Watson, Hadiya</creatorcontrib><creatorcontrib>Au, Wei-Chun</creatorcontrib><creatorcontrib>Shakoury-Elizeh, Minoo</creatorcontrib><creatorcontrib>Basrai, Munira A.</creatorcontrib><creatorcontrib>Bonifacino, Juan S.</creatorcontrib><creatorcontrib>Philpott, Caroline C.</creatorcontrib><title>Gga2 Mediates Sequential Ubiquitin-independent and Ubiquitin-dependent Steps in the Trafficking of ARN1 from the trans-Golgi Network to the Vacuole</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>In Saccharomyces cerevisiae, ARN1 encodes a transporter for the uptake of ferrichrome, an important nutritional source of iron. In the absence of ferrichrome, Arn1p is sorted directly from the trans-Golgi network (TGN) to the vacuolar lumen via the vacuolar protein-sorting pathway. Arn1p is mis-sorted to the plasma membrane in cells lacking Gga2p, a monomeric clathrin-adaptor protein involved in vesicular transport from the TGN. Although Ggas have been characterized as ubiquitin receptors, we show here that ubiquitin binding by Gga2 was not required for the TGN-to-endosome trafficking of Arn1, but it was required for subsequent sorting of Arn1 into the multivesicular body. In a ubiquitin-binding mutant of Gga2, Arn1p accumulated on the vacuolar membrane in a ubiquitinated form. The yeast epsins Ent3p and Ent4p were also involved in TGN-to-vacuole sorting of Arn1p. Amino-terminal sequences of Arn1p were required for vacuolar protein sorting, as mutation of ubiquitinatable lysine residues resulted in accumulation on the vacuolar membrane, and mutation of either a THN or YGL sequence resulted in mis-sorting to the plasma membrane. These studies suggest that Gga2 is involved in sorting at both the TGN and multivesicular body and that the first step can occur without ubiquitin binding.</description><subject>Adaptor Proteins, Vesicular Transport - chemistry</subject><subject>Adaptor Proteins, Vesicular Transport - genetics</subject><subject>Adaptor Proteins, Vesicular Transport - metabolism</subject><subject>Amino Acid Sequence</subject><subject>Membrane Transport Proteins - chemistry</subject><subject>Membrane Transport Proteins - genetics</subject><subject>Membrane Transport Proteins - metabolism</subject><subject>Molecular Basis of Cell and Developmental Biology</subject><subject>Molecular Sequence Data</subject><subject>Protein Binding</subject><subject>Protein Transport</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - chemistry</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae Proteins - chemistry</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Sequence Alignment</subject><subject>trans-Golgi Network - chemistry</subject><subject>trans-Golgi Network - genetics</subject><subject>trans-Golgi Network - metabolism</subject><subject>Ubiquitin - metabolism</subject><subject>Vacuoles - chemistry</subject><subject>Vacuoles - genetics</subject><subject>Vacuoles - metabolism</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkk9vFCEYxidGY2v17E05GG-z5c_AzFxMmkZXk7Ymbtd4Iwy8M0s7C1tg2_g5_MKynY2tByMHSHh-vLw8D0XxmuAZwXV1fNXp2TnB7QwzjAl_UhwS3LCScfLjaXGIMSVlS3lzULyI8QrnUbXkeXFAWl5XlIrD4td8UBSdg7EqQUQLuNmCS1aNaNnZm61N1pXWGdhAnlxCyplHysP-IsEmIutQWgG6DKrvrb62bkC-RyffLgjqg1_fiykoF8u5HweLLiDd-XCNkr-Xviu99SO8LJ71aozwar8eFctPHy9PP5dnX-dfTk_OSs0pTyVljVBaAGlobQxnfV-xjlWNyEa0uDKKio4Y3YjaYKMV7rVhnaG0qYiqWt6wo-LDVHez7dZgdH5HUKPcBLtW4af0ysq_FWdXcvC3ktbZRs5zgff7AsFn32KSaxs1jKNy4LdRipq3jIv2vyAlVFSC4wweT6AOPsYA_Z9uCJa7xGVOXO4Sl1Pi-cSbx4944PcRZ-DdBKzssLqzAWRnvV7BWmYnJOMy-8h2N7-dsF55qYZgo1wuKCYMEyGaFtNMtBMBOZNbC0FGbcHp_HcC6CSNt__s8jcx_NHK</recordid><startdate>20090828</startdate><enddate>20090828</enddate><creator>Deng, Yi</creator><creator>Guo, Yan</creator><creator>Watson, Hadiya</creator><creator>Au, Wei-Chun</creator><creator>Shakoury-Elizeh, Minoo</creator><creator>Basrai, Munira A.</creator><creator>Bonifacino, Juan S.</creator><creator>Philpott, Caroline C.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>M7N</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090828</creationdate><title>Gga2 Mediates Sequential Ubiquitin-independent and Ubiquitin-dependent Steps in the Trafficking of ARN1 from the trans-Golgi Network to the Vacuole</title><author>Deng, Yi ; Guo, Yan ; Watson, Hadiya ; Au, Wei-Chun ; Shakoury-Elizeh, Minoo ; Basrai, Munira A. ; Bonifacino, Juan S. ; Philpott, Caroline C.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c525t-2386ac6e1827dd53ff43b3486015904da26b1dc867d0dca0fcd3bd22841a49583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptor Proteins, Vesicular Transport - chemistry</topic><topic>Adaptor Proteins, Vesicular Transport - genetics</topic><topic>Adaptor Proteins, Vesicular Transport - metabolism</topic><topic>Amino Acid Sequence</topic><topic>Membrane Transport Proteins - chemistry</topic><topic>Membrane Transport Proteins - genetics</topic><topic>Membrane Transport Proteins - metabolism</topic><topic>Molecular Basis of Cell and Developmental Biology</topic><topic>Molecular Sequence Data</topic><topic>Protein Binding</topic><topic>Protein Transport</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - chemistry</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae Proteins - chemistry</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Sequence Alignment</topic><topic>trans-Golgi Network - chemistry</topic><topic>trans-Golgi Network - genetics</topic><topic>trans-Golgi Network - metabolism</topic><topic>Ubiquitin - metabolism</topic><topic>Vacuoles - chemistry</topic><topic>Vacuoles - genetics</topic><topic>Vacuoles - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Deng, Yi</creatorcontrib><creatorcontrib>Guo, Yan</creatorcontrib><creatorcontrib>Watson, Hadiya</creatorcontrib><creatorcontrib>Au, Wei-Chun</creatorcontrib><creatorcontrib>Shakoury-Elizeh, Minoo</creatorcontrib><creatorcontrib>Basrai, Munira A.</creatorcontrib><creatorcontrib>Bonifacino, Juan S.</creatorcontrib><creatorcontrib>Philpott, Caroline C.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Deng, Yi</au><au>Guo, Yan</au><au>Watson, Hadiya</au><au>Au, Wei-Chun</au><au>Shakoury-Elizeh, Minoo</au><au>Basrai, Munira A.</au><au>Bonifacino, Juan S.</au><au>Philpott, Caroline C.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Gga2 Mediates Sequential Ubiquitin-independent and Ubiquitin-dependent Steps in the Trafficking of ARN1 from the trans-Golgi Network to the Vacuole</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-08-28</date><risdate>2009</risdate><volume>284</volume><issue>35</issue><spage>23830</spage><epage>23841</epage><pages>23830-23841</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>In Saccharomyces cerevisiae, ARN1 encodes a transporter for the uptake of ferrichrome, an important nutritional source of iron. In the absence of ferrichrome, Arn1p is sorted directly from the trans-Golgi network (TGN) to the vacuolar lumen via the vacuolar protein-sorting pathway. Arn1p is mis-sorted to the plasma membrane in cells lacking Gga2p, a monomeric clathrin-adaptor protein involved in vesicular transport from the TGN. Although Ggas have been characterized as ubiquitin receptors, we show here that ubiquitin binding by Gga2 was not required for the TGN-to-endosome trafficking of Arn1, but it was required for subsequent sorting of Arn1 into the multivesicular body. In a ubiquitin-binding mutant of Gga2, Arn1p accumulated on the vacuolar membrane in a ubiquitinated form. The yeast epsins Ent3p and Ent4p were also involved in TGN-to-vacuole sorting of Arn1p. Amino-terminal sequences of Arn1p were required for vacuolar protein sorting, as mutation of ubiquitinatable lysine residues resulted in accumulation on the vacuolar membrane, and mutation of either a THN or YGL sequence resulted in mis-sorting to the plasma membrane. These studies suggest that Gga2 is involved in sorting at both the TGN and multivesicular body and that the first step can occur without ubiquitin binding.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19574226</pmid><doi>10.1074/jbc.M109.030015</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-08, Vol.284 (35), p.23830-23841
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2749155
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Adaptor Proteins, Vesicular Transport - chemistry
Adaptor Proteins, Vesicular Transport - genetics
Adaptor Proteins, Vesicular Transport - metabolism
Amino Acid Sequence
Membrane Transport Proteins - chemistry
Membrane Transport Proteins - genetics
Membrane Transport Proteins - metabolism
Molecular Basis of Cell and Developmental Biology
Molecular Sequence Data
Protein Binding
Protein Transport
Saccharomyces cerevisiae
Saccharomyces cerevisiae - chemistry
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae Proteins - chemistry
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Sequence Alignment
trans-Golgi Network - chemistry
trans-Golgi Network - genetics
trans-Golgi Network - metabolism
Ubiquitin - metabolism
Vacuoles - chemistry
Vacuoles - genetics
Vacuoles - metabolism
title Gga2 Mediates Sequential Ubiquitin-independent and Ubiquitin-dependent Steps in the Trafficking of ARN1 from the trans-Golgi Network to the Vacuole
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T21%3A50%3A16IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Gga2%20Mediates%20Sequential%20Ubiquitin-independent%20and%20Ubiquitin-dependent%20Steps%20in%20the%20Trafficking%20of%20ARN1%20from%20the%20trans-Golgi%20Network%20to%20the%20Vacuole&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Deng,%20Yi&rft.date=2009-08-28&rft.volume=284&rft.issue=35&rft.spage=23830&rft.epage=23841&rft.pages=23830-23841&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.030015&rft_dat=%3Cproquest_pubme%3E21264650%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21264650&rft_id=info:pmid/19574226&rft_els_id=S0021925818608105&rfr_iscdi=true