The Electrocortical Effects of Enflurane: Experiment and Theory
High concentrations of enflurane will induce a characteristic electroencephalogram pattern consisting of periods of suppression alternating with large short paroxysmal epileptiform discharges (PEDs). In this study, we compared a theoretical computer model of this activity with real local field poten...
Gespeichert in:
Veröffentlicht in: | Anesthesia and analgesia 2009-10, Vol.109 (4), p.1253-1262 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1262 |
---|---|
container_issue | 4 |
container_start_page | 1253 |
container_title | Anesthesia and analgesia |
container_volume | 109 |
creator | Sleigh, James W. Vizuete, Jeannette A. Voss, Logan Steyn-Ross, Alistair Steyn-Ross, Moira Marcuccilli, Charles J. Hudetz, Anthony G. |
description | High concentrations of enflurane will induce a characteristic electroencephalogram pattern consisting of periods of suppression alternating with large short paroxysmal epileptiform discharges (PEDs). In this study, we compared a theoretical computer model of this activity with real local field potential (LFP) data obtained from anesthetized rats.
After implantation of a high-density 8 x 8 electrode array in the visual cortex, the patterns of LFP and multiunit spike activity were recorded in rats during 0.5, 1.0, 1.5, and 2.0 minimum alveolar anesthetic concentration (MAC) enflurane anesthesia. These recordings were compared with computer simulations from a mean field model of neocortical dynamics. The neuronal effect of increasing enflurane concentration was simulated by prolonging the decay time constant of the inhibitory postsynaptic potential (IPSP). The amplitude of the excitatory postsynaptic potential (EPSP) was modulated, inverse to the neocortical firing rate.
In the anesthetized rats, increasing enflurane concentrations consistently caused the appearance of suppression pattern (>1.5 MAC) in the LFP recordings. The mean rate of multiunit spike activity decreased from 2.54/s (0.5 MAC) to 0.19/s (2.0 MAC). At high MAC, the majority of the multiunit action potential events became synchronous with the PED. In the theoretical model, prolongation of the IPSP decay time and activity-dependent EPSP modulation resulted in output that was similar in morphology to that obtained from the experimental data. The propensity for rhythmic seizure-like activity in the model could be determined by analysis of the eigenvalues of the equations.
It is possible to use a mean field theory of neocortical dynamics to replicate the PED pattern observed in LFPs in rats under enflurane anesthesia. This pattern requires a combination of a moderately increased total area under the IPSP, prolonged IPSP decay time, and also activity-dependent modulation of EPSP amplitude. |
doi_str_mv | 10.1213/ANE.0b013e3181add06b |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2747102</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19762755</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5479-71c100fe577dc341e589d893f6c917837555be65f8dfef5a8142374ca793d83b3</originalsourceid><addsrcrecordid>eNpdkUtPxCAUhYnR6Pj4B8Z047LKhVLAhWZi6iOZ6EbXhFKw1dpOoOM4_16amfhiQ-7lnHNvPhA6BnwGBOj59KE4wyUGaikI0FWF83ILTYCRPOVMim00wRjTlEgp99B-CK-xBCzyXbQHkueEMzZBV0-1TYrWmsH3pvdDY3SbFM7FRkh6lxSdaxded_YiKT7n1jfvthsS3VVJNPZ-dYh2nG6DPdrcB-j5pni6vktnj7f319NZaljGZcrBAMbOMs4rQzOwTMhKSOpyI4ELGndhpc2ZE5WzjmkBGaE8M5pLWgla0gN0uc6dL8p3W5m4hdetmseFtF-pXjfq70vX1Oql_1CEZxwwiQHZOsD4PgRv3bcXsBqBqghU_QcabSe_5_6YNgSj4HQj0CGyc5GVacK3joDMJaH4Z_6ybwfrw1u7WFqvaqvboVZ4PIzKlGAsYSzS8fMk_QL7do_T</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Electrocortical Effects of Enflurane: Experiment and Theory</title><source>MEDLINE</source><source>Journals@Ovid LWW Legacy Archive</source><source>EZB-FREE-00999 freely available EZB journals</source><creator>Sleigh, James W. ; Vizuete, Jeannette A. ; Voss, Logan ; Steyn-Ross, Alistair ; Steyn-Ross, Moira ; Marcuccilli, Charles J. ; Hudetz, Anthony G.</creator><creatorcontrib>Sleigh, James W. ; Vizuete, Jeannette A. ; Voss, Logan ; Steyn-Ross, Alistair ; Steyn-Ross, Moira ; Marcuccilli, Charles J. ; Hudetz, Anthony G.</creatorcontrib><description>High concentrations of enflurane will induce a characteristic electroencephalogram pattern consisting of periods of suppression alternating with large short paroxysmal epileptiform discharges (PEDs). In this study, we compared a theoretical computer model of this activity with real local field potential (LFP) data obtained from anesthetized rats.
After implantation of a high-density 8 x 8 electrode array in the visual cortex, the patterns of LFP and multiunit spike activity were recorded in rats during 0.5, 1.0, 1.5, and 2.0 minimum alveolar anesthetic concentration (MAC) enflurane anesthesia. These recordings were compared with computer simulations from a mean field model of neocortical dynamics. The neuronal effect of increasing enflurane concentration was simulated by prolonging the decay time constant of the inhibitory postsynaptic potential (IPSP). The amplitude of the excitatory postsynaptic potential (EPSP) was modulated, inverse to the neocortical firing rate.
In the anesthetized rats, increasing enflurane concentrations consistently caused the appearance of suppression pattern (>1.5 MAC) in the LFP recordings. The mean rate of multiunit spike activity decreased from 2.54/s (0.5 MAC) to 0.19/s (2.0 MAC). At high MAC, the majority of the multiunit action potential events became synchronous with the PED. In the theoretical model, prolongation of the IPSP decay time and activity-dependent EPSP modulation resulted in output that was similar in morphology to that obtained from the experimental data. The propensity for rhythmic seizure-like activity in the model could be determined by analysis of the eigenvalues of the equations.
It is possible to use a mean field theory of neocortical dynamics to replicate the PED pattern observed in LFPs in rats under enflurane anesthesia. This pattern requires a combination of a moderately increased total area under the IPSP, prolonged IPSP decay time, and also activity-dependent modulation of EPSP amplitude.</description><identifier>ISSN: 0003-2999</identifier><identifier>EISSN: 1526-7598</identifier><identifier>DOI: 10.1213/ANE.0b013e3181add06b</identifier><identifier>PMID: 19762755</identifier><identifier>CODEN: AACRAT</identifier><language>eng</language><publisher>Hagerstown, MD: International Anesthesia Research Society</publisher><subject>Anesthesia ; Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy ; Anesthetics, Inhalation - toxicity ; Animals ; Biological and medical sciences ; Computer Simulation ; Dose-Response Relationship, Drug ; Electroencephalography ; Enflurane - toxicity ; Inhibitory Postsynaptic Potentials ; Male ; Medical sciences ; Models, Neurological ; Rats ; Rats, Sprague-Dawley ; Reproducibility of Results ; Seizures - chemically induced ; Seizures - physiopathology ; Time Factors ; Visual Cortex - drug effects ; Visual Cortex - physiopathology</subject><ispartof>Anesthesia and analgesia, 2009-10, Vol.109 (4), p.1253-1262</ispartof><rights>International Anesthesia Research Society</rights><rights>2009 INIST-CNRS</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5479-71c100fe577dc341e589d893f6c917837555be65f8dfef5a8142374ca793d83b3</citedby><cites>FETCH-LOGICAL-c5479-71c100fe577dc341e589d893f6c917837555be65f8dfef5a8142374ca793d83b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttp://ovidsp.ovid.com/ovidweb.cgi?T=JS&NEWS=n&CSC=Y&PAGE=fulltext&D=ovft&AN=00000539-200910000-00039$$EHTML$$P50$$Gwolterskluwer$$H</linktohtml><link.rule.ids>230,314,780,784,885,4607,27923,27924,65232</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21969230$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19762755$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sleigh, James W.</creatorcontrib><creatorcontrib>Vizuete, Jeannette A.</creatorcontrib><creatorcontrib>Voss, Logan</creatorcontrib><creatorcontrib>Steyn-Ross, Alistair</creatorcontrib><creatorcontrib>Steyn-Ross, Moira</creatorcontrib><creatorcontrib>Marcuccilli, Charles J.</creatorcontrib><creatorcontrib>Hudetz, Anthony G.</creatorcontrib><title>The Electrocortical Effects of Enflurane: Experiment and Theory</title><title>Anesthesia and analgesia</title><addtitle>Anesth Analg</addtitle><description>High concentrations of enflurane will induce a characteristic electroencephalogram pattern consisting of periods of suppression alternating with large short paroxysmal epileptiform discharges (PEDs). In this study, we compared a theoretical computer model of this activity with real local field potential (LFP) data obtained from anesthetized rats.
After implantation of a high-density 8 x 8 electrode array in the visual cortex, the patterns of LFP and multiunit spike activity were recorded in rats during 0.5, 1.0, 1.5, and 2.0 minimum alveolar anesthetic concentration (MAC) enflurane anesthesia. These recordings were compared with computer simulations from a mean field model of neocortical dynamics. The neuronal effect of increasing enflurane concentration was simulated by prolonging the decay time constant of the inhibitory postsynaptic potential (IPSP). The amplitude of the excitatory postsynaptic potential (EPSP) was modulated, inverse to the neocortical firing rate.
In the anesthetized rats, increasing enflurane concentrations consistently caused the appearance of suppression pattern (>1.5 MAC) in the LFP recordings. The mean rate of multiunit spike activity decreased from 2.54/s (0.5 MAC) to 0.19/s (2.0 MAC). At high MAC, the majority of the multiunit action potential events became synchronous with the PED. In the theoretical model, prolongation of the IPSP decay time and activity-dependent EPSP modulation resulted in output that was similar in morphology to that obtained from the experimental data. The propensity for rhythmic seizure-like activity in the model could be determined by analysis of the eigenvalues of the equations.
It is possible to use a mean field theory of neocortical dynamics to replicate the PED pattern observed in LFPs in rats under enflurane anesthesia. This pattern requires a combination of a moderately increased total area under the IPSP, prolonged IPSP decay time, and also activity-dependent modulation of EPSP amplitude.</description><subject>Anesthesia</subject><subject>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</subject><subject>Anesthetics, Inhalation - toxicity</subject><subject>Animals</subject><subject>Biological and medical sciences</subject><subject>Computer Simulation</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electroencephalography</subject><subject>Enflurane - toxicity</subject><subject>Inhibitory Postsynaptic Potentials</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Models, Neurological</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Reproducibility of Results</subject><subject>Seizures - chemically induced</subject><subject>Seizures - physiopathology</subject><subject>Time Factors</subject><subject>Visual Cortex - drug effects</subject><subject>Visual Cortex - physiopathology</subject><issn>0003-2999</issn><issn>1526-7598</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtPxCAUhYnR6Pj4B8Z047LKhVLAhWZi6iOZ6EbXhFKw1dpOoOM4_16amfhiQ-7lnHNvPhA6BnwGBOj59KE4wyUGaikI0FWF83ILTYCRPOVMim00wRjTlEgp99B-CK-xBCzyXbQHkueEMzZBV0-1TYrWmsH3pvdDY3SbFM7FRkh6lxSdaxded_YiKT7n1jfvthsS3VVJNPZ-dYh2nG6DPdrcB-j5pni6vktnj7f319NZaljGZcrBAMbOMs4rQzOwTMhKSOpyI4ELGndhpc2ZE5WzjmkBGaE8M5pLWgla0gN0uc6dL8p3W5m4hdetmseFtF-pXjfq70vX1Oql_1CEZxwwiQHZOsD4PgRv3bcXsBqBqghU_QcabSe_5_6YNgSj4HQj0CGyc5GVacK3joDMJaH4Z_6ybwfrw1u7WFqvaqvboVZ4PIzKlGAsYSzS8fMk_QL7do_T</recordid><startdate>20091001</startdate><enddate>20091001</enddate><creator>Sleigh, James W.</creator><creator>Vizuete, Jeannette A.</creator><creator>Voss, Logan</creator><creator>Steyn-Ross, Alistair</creator><creator>Steyn-Ross, Moira</creator><creator>Marcuccilli, Charles J.</creator><creator>Hudetz, Anthony G.</creator><general>International Anesthesia Research Society</general><general>Lippincott Williams & Wilkins</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20091001</creationdate><title>The Electrocortical Effects of Enflurane: Experiment and Theory</title><author>Sleigh, James W. ; Vizuete, Jeannette A. ; Voss, Logan ; Steyn-Ross, Alistair ; Steyn-Ross, Moira ; Marcuccilli, Charles J. ; Hudetz, Anthony G.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5479-71c100fe577dc341e589d893f6c917837555be65f8dfef5a8142374ca793d83b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Anesthesia</topic><topic>Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy</topic><topic>Anesthetics, Inhalation - toxicity</topic><topic>Animals</topic><topic>Biological and medical sciences</topic><topic>Computer Simulation</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electroencephalography</topic><topic>Enflurane - toxicity</topic><topic>Inhibitory Postsynaptic Potentials</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Models, Neurological</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Reproducibility of Results</topic><topic>Seizures - chemically induced</topic><topic>Seizures - physiopathology</topic><topic>Time Factors</topic><topic>Visual Cortex - drug effects</topic><topic>Visual Cortex - physiopathology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sleigh, James W.</creatorcontrib><creatorcontrib>Vizuete, Jeannette A.</creatorcontrib><creatorcontrib>Voss, Logan</creatorcontrib><creatorcontrib>Steyn-Ross, Alistair</creatorcontrib><creatorcontrib>Steyn-Ross, Moira</creatorcontrib><creatorcontrib>Marcuccilli, Charles J.</creatorcontrib><creatorcontrib>Hudetz, Anthony G.</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Anesthesia and analgesia</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sleigh, James W.</au><au>Vizuete, Jeannette A.</au><au>Voss, Logan</au><au>Steyn-Ross, Alistair</au><au>Steyn-Ross, Moira</au><au>Marcuccilli, Charles J.</au><au>Hudetz, Anthony G.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Electrocortical Effects of Enflurane: Experiment and Theory</atitle><jtitle>Anesthesia and analgesia</jtitle><addtitle>Anesth Analg</addtitle><date>2009-10-01</date><risdate>2009</risdate><volume>109</volume><issue>4</issue><spage>1253</spage><epage>1262</epage><pages>1253-1262</pages><issn>0003-2999</issn><eissn>1526-7598</eissn><coden>AACRAT</coden><abstract>High concentrations of enflurane will induce a characteristic electroencephalogram pattern consisting of periods of suppression alternating with large short paroxysmal epileptiform discharges (PEDs). In this study, we compared a theoretical computer model of this activity with real local field potential (LFP) data obtained from anesthetized rats.
After implantation of a high-density 8 x 8 electrode array in the visual cortex, the patterns of LFP and multiunit spike activity were recorded in rats during 0.5, 1.0, 1.5, and 2.0 minimum alveolar anesthetic concentration (MAC) enflurane anesthesia. These recordings were compared with computer simulations from a mean field model of neocortical dynamics. The neuronal effect of increasing enflurane concentration was simulated by prolonging the decay time constant of the inhibitory postsynaptic potential (IPSP). The amplitude of the excitatory postsynaptic potential (EPSP) was modulated, inverse to the neocortical firing rate.
In the anesthetized rats, increasing enflurane concentrations consistently caused the appearance of suppression pattern (>1.5 MAC) in the LFP recordings. The mean rate of multiunit spike activity decreased from 2.54/s (0.5 MAC) to 0.19/s (2.0 MAC). At high MAC, the majority of the multiunit action potential events became synchronous with the PED. In the theoretical model, prolongation of the IPSP decay time and activity-dependent EPSP modulation resulted in output that was similar in morphology to that obtained from the experimental data. The propensity for rhythmic seizure-like activity in the model could be determined by analysis of the eigenvalues of the equations.
It is possible to use a mean field theory of neocortical dynamics to replicate the PED pattern observed in LFPs in rats under enflurane anesthesia. This pattern requires a combination of a moderately increased total area under the IPSP, prolonged IPSP decay time, and also activity-dependent modulation of EPSP amplitude.</abstract><cop>Hagerstown, MD</cop><pub>International Anesthesia Research Society</pub><pmid>19762755</pmid><doi>10.1213/ANE.0b013e3181add06b</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0003-2999 |
ispartof | Anesthesia and analgesia, 2009-10, Vol.109 (4), p.1253-1262 |
issn | 0003-2999 1526-7598 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2747102 |
source | MEDLINE; Journals@Ovid LWW Legacy Archive; EZB-FREE-00999 freely available EZB journals |
subjects | Anesthesia Anesthesia. Intensive care medicine. Transfusions. Cell therapy and gene therapy Anesthetics, Inhalation - toxicity Animals Biological and medical sciences Computer Simulation Dose-Response Relationship, Drug Electroencephalography Enflurane - toxicity Inhibitory Postsynaptic Potentials Male Medical sciences Models, Neurological Rats Rats, Sprague-Dawley Reproducibility of Results Seizures - chemically induced Seizures - physiopathology Time Factors Visual Cortex - drug effects Visual Cortex - physiopathology |
title | The Electrocortical Effects of Enflurane: Experiment and Theory |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T11%3A25%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Electrocortical%20Effects%20of%20Enflurane:%20Experiment%20and%20Theory&rft.jtitle=Anesthesia%20and%20analgesia&rft.au=Sleigh,%20James%20W.&rft.date=2009-10-01&rft.volume=109&rft.issue=4&rft.spage=1253&rft.epage=1262&rft.pages=1253-1262&rft.issn=0003-2999&rft.eissn=1526-7598&rft.coden=AACRAT&rft_id=info:doi/10.1213/ANE.0b013e3181add06b&rft_dat=%3Cpubmed_cross%3E19762755%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19762755&rfr_iscdi=true |