Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling
Techniques for systematically monitoring protein translation have lagged far behind methods for measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide investigation of tra...
Gespeichert in:
Veröffentlicht in: | Science (American Association for the Advancement of Science) 2009-04, Vol.324 (5924), p.218-223 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 223 |
---|---|
container_issue | 5924 |
container_start_page | 218 |
container_title | Science (American Association for the Advancement of Science) |
container_volume | 324 |
creator | Ingolia, Nicholas T Ghaemmaghami, Sina Newman, John R.S Weissman, Jonathan S |
description | Techniques for systematically monitoring protein translation have lagged far behind methods for measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide investigation of translation with subcodon resolution. We used this technique to monitor translation in budding yeast under both rich and starvation conditions. These studies defined the protein sequences being translated and found extensive translational control in both determining absolute protein abundance and responding to environmental stress. We also observed distinct phases during translation that involve a large decrease in ribosome density going from early to late peptide elongation as well as widespread regulated initiation at non-adenine-uracil-guanine (AUG) codons. Ribosome profiling is readily adaptable to other organisms, making high-precision investigation of protein translation experimentally accessible. |
doi_str_mv | 10.1126/science.1168978 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2746483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20493686</jstor_id><sourcerecordid>20493686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c679t-acdfc19cbef33ecac25618a7faba736c0bf981fc2fe41f1e8b2625b154d727173</originalsourceid><addsrcrecordid>eNp9kc1rFTEUxYMo9lldu1IHQV2NzcdMPjZCKVqFolL7dBkyeclrSl7SJjOV_vfe5xtadeEqJOd3DzfnIPSU4LeEUH5QbXDJOrhwqYS8hxYEq75VFLP7aIEx463Eot9Dj2q9wBg0xR6iPaIoYVKIBdLHLuWNa3-ElWsOk4k3NdQmpOZ7uM5N9s1ZMalGM4acmp9hPG8-Tza6PG75U1dznH5LyxrSujkNQ65g13wt2YcIT4_RA29idU_mcx8tP7w_O_rYnnw5_nR0eNJaLtTYGrvylig7OM-Ys8bSnhNphDeDEYxbPHglibfUu4544uRAOe0H0ncrQQURbB-92_leTsPGraxLYzFRX5awMeVGZxP030oK53qdrzUVHe8kA4M3s0HJV5Oro96Eal2MJrk8VS06RonCUgL5-r8kxT1mlPYAvvwHvMhTgYyBIYwTIdl28YMdZEuutTh_uzPBetuxnjvWc8cw8fzPr97xc6kAvJoBU62JHhq0od5yQAlMeAfcsx13Ucdc7nTcKcYlB_3FTvcma7Mu4LH8RjFhMA2RQyK_AEnxxYM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213617837</pqid></control><display><type>article</type><title>Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Ingolia, Nicholas T ; Ghaemmaghami, Sina ; Newman, John R.S ; Weissman, Jonathan S</creator><creatorcontrib>Ingolia, Nicholas T ; Ghaemmaghami, Sina ; Newman, John R.S ; Weissman, Jonathan S</creatorcontrib><description>Techniques for systematically monitoring protein translation have lagged far behind methods for measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide investigation of translation with subcodon resolution. We used this technique to monitor translation in budding yeast under both rich and starvation conditions. These studies defined the protein sequences being translated and found extensive translational control in both determining absolute protein abundance and responding to environmental stress. We also observed distinct phases during translation that involve a large decrease in ribosome density going from early to late peptide elongation as well as widespread regulated initiation at non-adenine-uracil-guanine (AUG) codons. Ribosome profiling is readily adaptable to other organisms, making high-precision investigation of protein translation experimentally accessible.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1168978</identifier><identifier>PMID: 19213877</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>5' Untranslated Regions ; Biological and medical sciences ; Codon ; Codons ; Diverse techniques ; Five prime untranslated regions ; Fundamental and applied biological sciences. Psychology ; Gene expression regulation ; Gene Library ; Genes ; Genome, Fungal ; Genomics ; Introns ; Messenger RNA ; Molecular and cellular biology ; Peptide Chain Elongation, Translational ; Peptide Chain Initiation, Translational ; Polyribosomes ; Protein Biosynthesis ; Protein synthesis ; Proteins ; Research Article ; Research methodology ; Ribonucleic acid ; Ribosomes ; Ribosomes - metabolism ; RNA ; RNA, Fungal - genetics ; RNA, Fungal - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - physiology ; Saccharomyces cerevisiae Proteins - biosynthesis ; Sequence Analysis, DNA ; Sequencing ; Starvation ; Yeast</subject><ispartof>Science (American Association for the Advancement of Science), 2009-04, Vol.324 (5924), p.218-223</ispartof><rights>Copyright 2009 American Association for the Advancement of Science</rights><rights>2009 INIST-CNRS</rights><rights>Copyright © 2009, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c679t-acdfc19cbef33ecac25618a7faba736c0bf981fc2fe41f1e8b2625b154d727173</citedby><cites>FETCH-LOGICAL-c679t-acdfc19cbef33ecac25618a7faba736c0bf981fc2fe41f1e8b2625b154d727173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20493686$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20493686$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21370164$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19213877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ingolia, Nicholas T</creatorcontrib><creatorcontrib>Ghaemmaghami, Sina</creatorcontrib><creatorcontrib>Newman, John R.S</creatorcontrib><creatorcontrib>Weissman, Jonathan S</creatorcontrib><title>Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Techniques for systematically monitoring protein translation have lagged far behind methods for measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide investigation of translation with subcodon resolution. We used this technique to monitor translation in budding yeast under both rich and starvation conditions. These studies defined the protein sequences being translated and found extensive translational control in both determining absolute protein abundance and responding to environmental stress. We also observed distinct phases during translation that involve a large decrease in ribosome density going from early to late peptide elongation as well as widespread regulated initiation at non-adenine-uracil-guanine (AUG) codons. Ribosome profiling is readily adaptable to other organisms, making high-precision investigation of protein translation experimentally accessible.</description><subject>5' Untranslated Regions</subject><subject>Biological and medical sciences</subject><subject>Codon</subject><subject>Codons</subject><subject>Diverse techniques</subject><subject>Five prime untranslated regions</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression regulation</subject><subject>Gene Library</subject><subject>Genes</subject><subject>Genome, Fungal</subject><subject>Genomics</subject><subject>Introns</subject><subject>Messenger RNA</subject><subject>Molecular and cellular biology</subject><subject>Peptide Chain Elongation, Translational</subject><subject>Peptide Chain Initiation, Translational</subject><subject>Polyribosomes</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Research Article</subject><subject>Research methodology</subject><subject>Ribonucleic acid</subject><subject>Ribosomes</subject><subject>Ribosomes - metabolism</subject><subject>RNA</subject><subject>RNA, Fungal - genetics</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Saccharomyces cerevisiae Proteins - biosynthesis</subject><subject>Sequence Analysis, DNA</subject><subject>Sequencing</subject><subject>Starvation</subject><subject>Yeast</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1rFTEUxYMo9lldu1IHQV2NzcdMPjZCKVqFolL7dBkyeclrSl7SJjOV_vfe5xtadeEqJOd3DzfnIPSU4LeEUH5QbXDJOrhwqYS8hxYEq75VFLP7aIEx463Eot9Dj2q9wBg0xR6iPaIoYVKIBdLHLuWNa3-ElWsOk4k3NdQmpOZ7uM5N9s1ZMalGM4acmp9hPG8-Tza6PG75U1dznH5LyxrSujkNQ65g13wt2YcIT4_RA29idU_mcx8tP7w_O_rYnnw5_nR0eNJaLtTYGrvylig7OM-Ys8bSnhNphDeDEYxbPHglibfUu4544uRAOe0H0ncrQQURbB-92_leTsPGraxLYzFRX5awMeVGZxP030oK53qdrzUVHe8kA4M3s0HJV5Oro96Eal2MJrk8VS06RonCUgL5-r8kxT1mlPYAvvwHvMhTgYyBIYwTIdl28YMdZEuutTh_uzPBetuxnjvWc8cw8fzPr97xc6kAvJoBU62JHhq0od5yQAlMeAfcsx13Ucdc7nTcKcYlB_3FTvcma7Mu4LH8RjFhMA2RQyK_AEnxxYM</recordid><startdate>20090410</startdate><enddate>20090410</enddate><creator>Ingolia, Nicholas T</creator><creator>Ghaemmaghami, Sina</creator><creator>Newman, John R.S</creator><creator>Weissman, Jonathan S</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20090410</creationdate><title>Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling</title><author>Ingolia, Nicholas T ; Ghaemmaghami, Sina ; Newman, John R.S ; Weissman, Jonathan S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c679t-acdfc19cbef33ecac25618a7faba736c0bf981fc2fe41f1e8b2625b154d727173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>5' Untranslated Regions</topic><topic>Biological and medical sciences</topic><topic>Codon</topic><topic>Codons</topic><topic>Diverse techniques</topic><topic>Five prime untranslated regions</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression regulation</topic><topic>Gene Library</topic><topic>Genes</topic><topic>Genome, Fungal</topic><topic>Genomics</topic><topic>Introns</topic><topic>Messenger RNA</topic><topic>Molecular and cellular biology</topic><topic>Peptide Chain Elongation, Translational</topic><topic>Peptide Chain Initiation, Translational</topic><topic>Polyribosomes</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Research Article</topic><topic>Research methodology</topic><topic>Ribonucleic acid</topic><topic>Ribosomes</topic><topic>Ribosomes - metabolism</topic><topic>RNA</topic><topic>RNA, Fungal - genetics</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Saccharomyces cerevisiae Proteins - biosynthesis</topic><topic>Sequence Analysis, DNA</topic><topic>Sequencing</topic><topic>Starvation</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ingolia, Nicholas T</creatorcontrib><creatorcontrib>Ghaemmaghami, Sina</creatorcontrib><creatorcontrib>Newman, John R.S</creatorcontrib><creatorcontrib>Weissman, Jonathan S</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ingolia, Nicholas T</au><au>Ghaemmaghami, Sina</au><au>Newman, John R.S</au><au>Weissman, Jonathan S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2009-04-10</date><risdate>2009</risdate><volume>324</volume><issue>5924</issue><spage>218</spage><epage>223</epage><pages>218-223</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Techniques for systematically monitoring protein translation have lagged far behind methods for measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide investigation of translation with subcodon resolution. We used this technique to monitor translation in budding yeast under both rich and starvation conditions. These studies defined the protein sequences being translated and found extensive translational control in both determining absolute protein abundance and responding to environmental stress. We also observed distinct phases during translation that involve a large decrease in ribosome density going from early to late peptide elongation as well as widespread regulated initiation at non-adenine-uracil-guanine (AUG) codons. Ribosome profiling is readily adaptable to other organisms, making high-precision investigation of protein translation experimentally accessible.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>19213877</pmid><doi>10.1126/science.1168978</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0036-8075 |
ispartof | Science (American Association for the Advancement of Science), 2009-04, Vol.324 (5924), p.218-223 |
issn | 0036-8075 1095-9203 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2746483 |
source | American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE |
subjects | 5' Untranslated Regions Biological and medical sciences Codon Codons Diverse techniques Five prime untranslated regions Fundamental and applied biological sciences. Psychology Gene expression regulation Gene Library Genes Genome, Fungal Genomics Introns Messenger RNA Molecular and cellular biology Peptide Chain Elongation, Translational Peptide Chain Initiation, Translational Polyribosomes Protein Biosynthesis Protein synthesis Proteins Research Article Research methodology Ribonucleic acid Ribosomes Ribosomes - metabolism RNA RNA, Fungal - genetics RNA, Fungal - metabolism RNA, Messenger - genetics RNA, Messenger - metabolism Saccharomyces cerevisiae Saccharomyces cerevisiae - genetics Saccharomyces cerevisiae - metabolism Saccharomyces cerevisiae - physiology Saccharomyces cerevisiae Proteins - biosynthesis Sequence Analysis, DNA Sequencing Starvation Yeast |
title | Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Wide%20Analysis%20in%20Vivo%20of%20Translation%20with%20Nucleotide%20Resolution%20Using%20Ribosome%20Profiling&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ingolia,%20Nicholas%20T&rft.date=2009-04-10&rft.volume=324&rft.issue=5924&rft.spage=218&rft.epage=223&rft.pages=218-223&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1168978&rft_dat=%3Cjstor_pubme%3E20493686%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213617837&rft_id=info:pmid/19213877&rft_jstor_id=20493686&rfr_iscdi=true |