Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling

Techniques for systematically monitoring protein translation have lagged far behind methods for measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide investigation of tra...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Science (American Association for the Advancement of Science) 2009-04, Vol.324 (5924), p.218-223
Hauptverfasser: Ingolia, Nicholas T, Ghaemmaghami, Sina, Newman, John R.S, Weissman, Jonathan S
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 223
container_issue 5924
container_start_page 218
container_title Science (American Association for the Advancement of Science)
container_volume 324
creator Ingolia, Nicholas T
Ghaemmaghami, Sina
Newman, John R.S
Weissman, Jonathan S
description Techniques for systematically monitoring protein translation have lagged far behind methods for measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide investigation of translation with subcodon resolution. We used this technique to monitor translation in budding yeast under both rich and starvation conditions. These studies defined the protein sequences being translated and found extensive translational control in both determining absolute protein abundance and responding to environmental stress. We also observed distinct phases during translation that involve a large decrease in ribosome density going from early to late peptide elongation as well as widespread regulated initiation at non-adenine-uracil-guanine (AUG) codons. Ribosome profiling is readily adaptable to other organisms, making high-precision investigation of protein translation experimentally accessible.
doi_str_mv 10.1126/science.1168978
format Article
fullrecord <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2746483</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>20493686</jstor_id><sourcerecordid>20493686</sourcerecordid><originalsourceid>FETCH-LOGICAL-c679t-acdfc19cbef33ecac25618a7faba736c0bf981fc2fe41f1e8b2625b154d727173</originalsourceid><addsrcrecordid>eNp9kc1rFTEUxYMo9lldu1IHQV2NzcdMPjZCKVqFolL7dBkyeclrSl7SJjOV_vfe5xtadeEqJOd3DzfnIPSU4LeEUH5QbXDJOrhwqYS8hxYEq75VFLP7aIEx463Eot9Dj2q9wBg0xR6iPaIoYVKIBdLHLuWNa3-ElWsOk4k3NdQmpOZ7uM5N9s1ZMalGM4acmp9hPG8-Tza6PG75U1dznH5LyxrSujkNQ65g13wt2YcIT4_RA29idU_mcx8tP7w_O_rYnnw5_nR0eNJaLtTYGrvylig7OM-Ys8bSnhNphDeDEYxbPHglibfUu4544uRAOe0H0ncrQQURbB-92_leTsPGraxLYzFRX5awMeVGZxP030oK53qdrzUVHe8kA4M3s0HJV5Oro96Eal2MJrk8VS06RonCUgL5-r8kxT1mlPYAvvwHvMhTgYyBIYwTIdl28YMdZEuutTh_uzPBetuxnjvWc8cw8fzPr97xc6kAvJoBU62JHhq0od5yQAlMeAfcsx13Ucdc7nTcKcYlB_3FTvcma7Mu4LH8RjFhMA2RQyK_AEnxxYM</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>213617837</pqid></control><display><type>article</type><title>Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling</title><source>American Association for the Advancement of Science</source><source>Jstor Complete Legacy</source><source>MEDLINE</source><creator>Ingolia, Nicholas T ; Ghaemmaghami, Sina ; Newman, John R.S ; Weissman, Jonathan S</creator><creatorcontrib>Ingolia, Nicholas T ; Ghaemmaghami, Sina ; Newman, John R.S ; Weissman, Jonathan S</creatorcontrib><description>Techniques for systematically monitoring protein translation have lagged far behind methods for measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide investigation of translation with subcodon resolution. We used this technique to monitor translation in budding yeast under both rich and starvation conditions. These studies defined the protein sequences being translated and found extensive translational control in both determining absolute protein abundance and responding to environmental stress. We also observed distinct phases during translation that involve a large decrease in ribosome density going from early to late peptide elongation as well as widespread regulated initiation at non-adenine-uracil-guanine (AUG) codons. Ribosome profiling is readily adaptable to other organisms, making high-precision investigation of protein translation experimentally accessible.</description><identifier>ISSN: 0036-8075</identifier><identifier>EISSN: 1095-9203</identifier><identifier>DOI: 10.1126/science.1168978</identifier><identifier>PMID: 19213877</identifier><identifier>CODEN: SCIEAS</identifier><language>eng</language><publisher>Washington, DC: American Association for the Advancement of Science</publisher><subject>5' Untranslated Regions ; Biological and medical sciences ; Codon ; Codons ; Diverse techniques ; Five prime untranslated regions ; Fundamental and applied biological sciences. Psychology ; Gene expression regulation ; Gene Library ; Genes ; Genome, Fungal ; Genomics ; Introns ; Messenger RNA ; Molecular and cellular biology ; Peptide Chain Elongation, Translational ; Peptide Chain Initiation, Translational ; Polyribosomes ; Protein Biosynthesis ; Protein synthesis ; Proteins ; Research Article ; Research methodology ; Ribonucleic acid ; Ribosomes ; Ribosomes - metabolism ; RNA ; RNA, Fungal - genetics ; RNA, Fungal - metabolism ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - metabolism ; Saccharomyces cerevisiae - physiology ; Saccharomyces cerevisiae Proteins - biosynthesis ; Sequence Analysis, DNA ; Sequencing ; Starvation ; Yeast</subject><ispartof>Science (American Association for the Advancement of Science), 2009-04, Vol.324 (5924), p.218-223</ispartof><rights>Copyright 2009 American Association for the Advancement of Science</rights><rights>2009 INIST-CNRS</rights><rights>Copyright © 2009, American Association for the Advancement of Science</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c679t-acdfc19cbef33ecac25618a7faba736c0bf981fc2fe41f1e8b2625b154d727173</citedby><cites>FETCH-LOGICAL-c679t-acdfc19cbef33ecac25618a7faba736c0bf981fc2fe41f1e8b2625b154d727173</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/20493686$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/20493686$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,776,780,799,881,2871,2872,27901,27902,57992,58225</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21370164$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19213877$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Ingolia, Nicholas T</creatorcontrib><creatorcontrib>Ghaemmaghami, Sina</creatorcontrib><creatorcontrib>Newman, John R.S</creatorcontrib><creatorcontrib>Weissman, Jonathan S</creatorcontrib><title>Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling</title><title>Science (American Association for the Advancement of Science)</title><addtitle>Science</addtitle><description>Techniques for systematically monitoring protein translation have lagged far behind methods for measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide investigation of translation with subcodon resolution. We used this technique to monitor translation in budding yeast under both rich and starvation conditions. These studies defined the protein sequences being translated and found extensive translational control in both determining absolute protein abundance and responding to environmental stress. We also observed distinct phases during translation that involve a large decrease in ribosome density going from early to late peptide elongation as well as widespread regulated initiation at non-adenine-uracil-guanine (AUG) codons. Ribosome profiling is readily adaptable to other organisms, making high-precision investigation of protein translation experimentally accessible.</description><subject>5' Untranslated Regions</subject><subject>Biological and medical sciences</subject><subject>Codon</subject><subject>Codons</subject><subject>Diverse techniques</subject><subject>Five prime untranslated regions</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene expression regulation</subject><subject>Gene Library</subject><subject>Genes</subject><subject>Genome, Fungal</subject><subject>Genomics</subject><subject>Introns</subject><subject>Messenger RNA</subject><subject>Molecular and cellular biology</subject><subject>Peptide Chain Elongation, Translational</subject><subject>Peptide Chain Initiation, Translational</subject><subject>Polyribosomes</subject><subject>Protein Biosynthesis</subject><subject>Protein synthesis</subject><subject>Proteins</subject><subject>Research Article</subject><subject>Research methodology</subject><subject>Ribonucleic acid</subject><subject>Ribosomes</subject><subject>Ribosomes - metabolism</subject><subject>RNA</subject><subject>RNA, Fungal - genetics</subject><subject>RNA, Fungal - metabolism</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - metabolism</subject><subject>Saccharomyces cerevisiae - physiology</subject><subject>Saccharomyces cerevisiae Proteins - biosynthesis</subject><subject>Sequence Analysis, DNA</subject><subject>Sequencing</subject><subject>Starvation</subject><subject>Yeast</subject><issn>0036-8075</issn><issn>1095-9203</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kc1rFTEUxYMo9lldu1IHQV2NzcdMPjZCKVqFolL7dBkyeclrSl7SJjOV_vfe5xtadeEqJOd3DzfnIPSU4LeEUH5QbXDJOrhwqYS8hxYEq75VFLP7aIEx463Eot9Dj2q9wBg0xR6iPaIoYVKIBdLHLuWNa3-ElWsOk4k3NdQmpOZ7uM5N9s1ZMalGM4acmp9hPG8-Tza6PG75U1dznH5LyxrSujkNQ65g13wt2YcIT4_RA29idU_mcx8tP7w_O_rYnnw5_nR0eNJaLtTYGrvylig7OM-Ys8bSnhNphDeDEYxbPHglibfUu4544uRAOe0H0ncrQQURbB-92_leTsPGraxLYzFRX5awMeVGZxP030oK53qdrzUVHe8kA4M3s0HJV5Oro96Eal2MJrk8VS06RonCUgL5-r8kxT1mlPYAvvwHvMhTgYyBIYwTIdl28YMdZEuutTh_uzPBetuxnjvWc8cw8fzPr97xc6kAvJoBU62JHhq0od5yQAlMeAfcsx13Ucdc7nTcKcYlB_3FTvcma7Mu4LH8RjFhMA2RQyK_AEnxxYM</recordid><startdate>20090410</startdate><enddate>20090410</enddate><creator>Ingolia, Nicholas T</creator><creator>Ghaemmaghami, Sina</creator><creator>Newman, John R.S</creator><creator>Weissman, Jonathan S</creator><general>American Association for the Advancement of Science</general><general>The American Association for the Advancement of Science</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7QQ</scope><scope>7QR</scope><scope>7SC</scope><scope>7SE</scope><scope>7SN</scope><scope>7SP</scope><scope>7SR</scope><scope>7SS</scope><scope>7T7</scope><scope>7TA</scope><scope>7TB</scope><scope>7TK</scope><scope>7TM</scope><scope>7U5</scope><scope>7U9</scope><scope>8BQ</scope><scope>8FD</scope><scope>C1K</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20090410</creationdate><title>Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling</title><author>Ingolia, Nicholas T ; Ghaemmaghami, Sina ; Newman, John R.S ; Weissman, Jonathan S</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c679t-acdfc19cbef33ecac25618a7faba736c0bf981fc2fe41f1e8b2625b154d727173</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>5' Untranslated Regions</topic><topic>Biological and medical sciences</topic><topic>Codon</topic><topic>Codons</topic><topic>Diverse techniques</topic><topic>Five prime untranslated regions</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene expression regulation</topic><topic>Gene Library</topic><topic>Genes</topic><topic>Genome, Fungal</topic><topic>Genomics</topic><topic>Introns</topic><topic>Messenger RNA</topic><topic>Molecular and cellular biology</topic><topic>Peptide Chain Elongation, Translational</topic><topic>Peptide Chain Initiation, Translational</topic><topic>Polyribosomes</topic><topic>Protein Biosynthesis</topic><topic>Protein synthesis</topic><topic>Proteins</topic><topic>Research Article</topic><topic>Research methodology</topic><topic>Ribonucleic acid</topic><topic>Ribosomes</topic><topic>Ribosomes - metabolism</topic><topic>RNA</topic><topic>RNA, Fungal - genetics</topic><topic>RNA, Fungal - metabolism</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - metabolism</topic><topic>Saccharomyces cerevisiae - physiology</topic><topic>Saccharomyces cerevisiae Proteins - biosynthesis</topic><topic>Sequence Analysis, DNA</topic><topic>Sequencing</topic><topic>Starvation</topic><topic>Yeast</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ingolia, Nicholas T</creatorcontrib><creatorcontrib>Ghaemmaghami, Sina</creatorcontrib><creatorcontrib>Newman, John R.S</creatorcontrib><creatorcontrib>Weissman, Jonathan S</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Ecology Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Science (American Association for the Advancement of Science)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ingolia, Nicholas T</au><au>Ghaemmaghami, Sina</au><au>Newman, John R.S</au><au>Weissman, Jonathan S</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling</atitle><jtitle>Science (American Association for the Advancement of Science)</jtitle><addtitle>Science</addtitle><date>2009-04-10</date><risdate>2009</risdate><volume>324</volume><issue>5924</issue><spage>218</spage><epage>223</epage><pages>218-223</pages><issn>0036-8075</issn><eissn>1095-9203</eissn><coden>SCIEAS</coden><abstract>Techniques for systematically monitoring protein translation have lagged far behind methods for measuring messenger RNA (mRNA) levels. Here, we present a ribosome-profiling strategy that is based on the deep sequencing of ribosome-protected mRNA fragments and enables genome-wide investigation of translation with subcodon resolution. We used this technique to monitor translation in budding yeast under both rich and starvation conditions. These studies defined the protein sequences being translated and found extensive translational control in both determining absolute protein abundance and responding to environmental stress. We also observed distinct phases during translation that involve a large decrease in ribosome density going from early to late peptide elongation as well as widespread regulated initiation at non-adenine-uracil-guanine (AUG) codons. Ribosome profiling is readily adaptable to other organisms, making high-precision investigation of protein translation experimentally accessible.</abstract><cop>Washington, DC</cop><pub>American Association for the Advancement of Science</pub><pmid>19213877</pmid><doi>10.1126/science.1168978</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0036-8075
ispartof Science (American Association for the Advancement of Science), 2009-04, Vol.324 (5924), p.218-223
issn 0036-8075
1095-9203
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2746483
source American Association for the Advancement of Science; Jstor Complete Legacy; MEDLINE
subjects 5' Untranslated Regions
Biological and medical sciences
Codon
Codons
Diverse techniques
Five prime untranslated regions
Fundamental and applied biological sciences. Psychology
Gene expression regulation
Gene Library
Genes
Genome, Fungal
Genomics
Introns
Messenger RNA
Molecular and cellular biology
Peptide Chain Elongation, Translational
Peptide Chain Initiation, Translational
Polyribosomes
Protein Biosynthesis
Protein synthesis
Proteins
Research Article
Research methodology
Ribonucleic acid
Ribosomes
Ribosomes - metabolism
RNA
RNA, Fungal - genetics
RNA, Fungal - metabolism
RNA, Messenger - genetics
RNA, Messenger - metabolism
Saccharomyces cerevisiae
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - metabolism
Saccharomyces cerevisiae - physiology
Saccharomyces cerevisiae Proteins - biosynthesis
Sequence Analysis, DNA
Sequencing
Starvation
Yeast
title Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-04T03%3A48%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Genome-Wide%20Analysis%20in%20Vivo%20of%20Translation%20with%20Nucleotide%20Resolution%20Using%20Ribosome%20Profiling&rft.jtitle=Science%20(American%20Association%20for%20the%20Advancement%20of%20Science)&rft.au=Ingolia,%20Nicholas%20T&rft.date=2009-04-10&rft.volume=324&rft.issue=5924&rft.spage=218&rft.epage=223&rft.pages=218-223&rft.issn=0036-8075&rft.eissn=1095-9203&rft.coden=SCIEAS&rft_id=info:doi/10.1126/science.1168978&rft_dat=%3Cjstor_pubme%3E20493686%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=213617837&rft_id=info:pmid/19213877&rft_jstor_id=20493686&rfr_iscdi=true