Comparative Evaluation of Nanofibrous Scaffolding for Bone Regeneration in Critical-Size Calvarial Defects
In a previous study we found that nanofibrous poly( l -lactic acid) (PLLA) scaffolds mimicking collagen fibers in size were superior to solid-walled scaffolds in promoting osteoblast differentiation and bone formation in vitro . In this study we used an in vivo model to confirm the biological proper...
Gespeichert in:
Veröffentlicht in: | Tissue engineering. Part A 2009-08, Vol.15 (8), p.2155-2162 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2162 |
---|---|
container_issue | 8 |
container_start_page | 2155 |
container_title | Tissue engineering. Part A |
container_volume | 15 |
creator | Woo, Kyung Mi Chen, Victor J. Jung, Hong-Moon Kim, Tae-Il Shin, Hong-In Baek, Jeong-Hwa Ryoo, Hyun-Mo Ma, Peter X. |
description | In a previous study we found that nanofibrous poly(
l
-lactic acid) (PLLA) scaffolds mimicking collagen fibers in size were superior to solid-walled scaffolds in promoting osteoblast differentiation and bone formation
in vitro
. In this study we used an
in vivo
model to confirm the biological properties of nanofibrous PLLA scaffolds and to evaluate how effectively they support bone regeneration against solid-walled scaffolds. The scaffolds were implanted in critical-size defects made on rat calvarial bones. Compared with solid-walled scaffolds, nanofibrous scaffolds supported substantially more new bone tissue formation, which was confirmed by micro-computed tomography measurement and von Kossa staining. Goldner's trichrome staining showed abundant collagen deposition in nanofibrous scaffolds but not in the control solid-walled scaffolds. The cells in these scaffolds were immuno-stained strongly for Runx2 and bone sialoprotein (BSP). In contrast, solid-walled scaffolds implanted in the defects were stained weakly with trichrome, Runx2, and BSP. These
in vivo
results demonstrate that nanofibrous architecture enhances osteoblast differentiation and bone formation. |
doi_str_mv | 10.1089/ten.tea.2008.0433 |
format | Article |
fullrecord | <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2744834</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A244160090</galeid><sourcerecordid>A244160090</sourcerecordid><originalsourceid>FETCH-LOGICAL-c609t-b5c0e9a8bb2866a29e869efb0cf5c3aed124288c573138239f741f19eb814c003</originalsourceid><addsrcrecordid>eNqNUV2L1TAQLaK46-oP8EWKD7615qtt8iKsdf2ARcFV8C1McyfXXHKTu2l7QX-9Kb2sH08SQoaZc05m5hTFU0pqSqR6OWGoJ4SaESJrIji_V5xTxbuK8-bb_btY0LPi0TjuCGlJ23UPi7NcELJR3Xmx6-P-AAkmd8Ty6gh-zmEMZbTlRwjRuiHFeSxvDFgb_caFbWljKl_HgOVn3GLAtBJcKPvkJmfAVzfuJ5Y9-CMkB758gxbNND4uHljwIz45vRfF17dXX_r31fWndx_6y-vKtERN1dAYggrkMDDZtsAUylahHYixjeGAG8oEk9I0HadcMq5sJ6ilCgdJhSGEXxSvVt3DPOxxYzBMCbw-JLeH9ENHcPrvSnDf9TYeNeuEkFxkgRcngRRvZxwnvXejQe8hYF6GZqRTghCWgc__Ae7inEIeTucNS9UpSTOoXkFb8KhdsDF_avLZ4N6ZvEfrcv6SCUFbQtTSP10JJsVxTGjvWqdEL77r7Hu-oBff9eJ75jz7c-bfjJPRGdCtgCUNIXiHA6bpP6R_AVeRvwQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>193897981</pqid></control><display><type>article</type><title>Comparative Evaluation of Nanofibrous Scaffolding for Bone Regeneration in Critical-Size Calvarial Defects</title><source>Mary Ann Liebert Online Subscription</source><source>MEDLINE</source><source>Alma/SFX Local Collection</source><creator>Woo, Kyung Mi ; Chen, Victor J. ; Jung, Hong-Moon ; Kim, Tae-Il ; Shin, Hong-In ; Baek, Jeong-Hwa ; Ryoo, Hyun-Mo ; Ma, Peter X.</creator><creatorcontrib>Woo, Kyung Mi ; Chen, Victor J. ; Jung, Hong-Moon ; Kim, Tae-Il ; Shin, Hong-In ; Baek, Jeong-Hwa ; Ryoo, Hyun-Mo ; Ma, Peter X.</creatorcontrib><description>In a previous study we found that nanofibrous poly(
l
-lactic acid) (PLLA) scaffolds mimicking collagen fibers in size were superior to solid-walled scaffolds in promoting osteoblast differentiation and bone formation
in vitro
. In this study we used an
in vivo
model to confirm the biological properties of nanofibrous PLLA scaffolds and to evaluate how effectively they support bone regeneration against solid-walled scaffolds. The scaffolds were implanted in critical-size defects made on rat calvarial bones. Compared with solid-walled scaffolds, nanofibrous scaffolds supported substantially more new bone tissue formation, which was confirmed by micro-computed tomography measurement and von Kossa staining. Goldner's trichrome staining showed abundant collagen deposition in nanofibrous scaffolds but not in the control solid-walled scaffolds. The cells in these scaffolds were immuno-stained strongly for Runx2 and bone sialoprotein (BSP). In contrast, solid-walled scaffolds implanted in the defects were stained weakly with trichrome, Runx2, and BSP. These
in vivo
results demonstrate that nanofibrous architecture enhances osteoblast differentiation and bone formation.</description><identifier>ISSN: 1937-3341</identifier><identifier>EISSN: 1937-335X</identifier><identifier>DOI: 10.1089/ten.tea.2008.0433</identifier><identifier>PMID: 19348597</identifier><language>eng</language><publisher>United States: Mary Ann Liebert, Inc</publisher><subject>Animals ; Bone Regeneration ; Bones ; Collagen ; Comparative studies ; Core Binding Factor Alpha 1 Subunit - metabolism ; Immunohistochemistry ; Integrin-Binding Sialoprotein ; Nanomaterials ; Nanostructures - chemistry ; Organic acids ; Original ; Original Articles ; Osteoblasts - metabolism ; Osteoblasts - pathology ; Osteogenesis ; Phenotype ; Rats ; Rats, Sprague-Dawley ; Sialoglycoproteins - metabolism ; Skull - pathology ; Staining and Labeling ; Tissue engineering ; Tissue Scaffolds - chemistry ; Tomography</subject><ispartof>Tissue engineering. Part A, 2009-08, Vol.15 (8), p.2155-2162</ispartof><rights>2009, Mary Ann Liebert, Inc.</rights><rights>COPYRIGHT 2009 Mary Ann Liebert, Inc.</rights><rights>(©) Copyright 2009, Mary Ann Liebert, Inc.</rights><rights>Copyright 2009, Mary Ann Liebert, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c609t-b5c0e9a8bb2866a29e869efb0cf5c3aed124288c573138239f741f19eb814c003</citedby><cites>FETCH-LOGICAL-c609t-b5c0e9a8bb2866a29e869efb0cf5c3aed124288c573138239f741f19eb814c003</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.liebertpub.com/doi/epdf/10.1089/ten.tea.2008.0433$$EPDF$$P50$$Gmaryannliebert$$H</linktopdf><linktohtml>$$Uhttps://www.liebertpub.com/doi/full/10.1089/ten.tea.2008.0433$$EHTML$$P50$$Gmaryannliebert$$H</linktohtml><link.rule.ids>230,314,776,780,881,3029,21702,27901,27902,55266,55278</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19348597$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Woo, Kyung Mi</creatorcontrib><creatorcontrib>Chen, Victor J.</creatorcontrib><creatorcontrib>Jung, Hong-Moon</creatorcontrib><creatorcontrib>Kim, Tae-Il</creatorcontrib><creatorcontrib>Shin, Hong-In</creatorcontrib><creatorcontrib>Baek, Jeong-Hwa</creatorcontrib><creatorcontrib>Ryoo, Hyun-Mo</creatorcontrib><creatorcontrib>Ma, Peter X.</creatorcontrib><title>Comparative Evaluation of Nanofibrous Scaffolding for Bone Regeneration in Critical-Size Calvarial Defects</title><title>Tissue engineering. Part A</title><addtitle>Tissue Eng Part A</addtitle><description>In a previous study we found that nanofibrous poly(
l
-lactic acid) (PLLA) scaffolds mimicking collagen fibers in size were superior to solid-walled scaffolds in promoting osteoblast differentiation and bone formation
in vitro
. In this study we used an
in vivo
model to confirm the biological properties of nanofibrous PLLA scaffolds and to evaluate how effectively they support bone regeneration against solid-walled scaffolds. The scaffolds were implanted in critical-size defects made on rat calvarial bones. Compared with solid-walled scaffolds, nanofibrous scaffolds supported substantially more new bone tissue formation, which was confirmed by micro-computed tomography measurement and von Kossa staining. Goldner's trichrome staining showed abundant collagen deposition in nanofibrous scaffolds but not in the control solid-walled scaffolds. The cells in these scaffolds were immuno-stained strongly for Runx2 and bone sialoprotein (BSP). In contrast, solid-walled scaffolds implanted in the defects were stained weakly with trichrome, Runx2, and BSP. These
in vivo
results demonstrate that nanofibrous architecture enhances osteoblast differentiation and bone formation.</description><subject>Animals</subject><subject>Bone Regeneration</subject><subject>Bones</subject><subject>Collagen</subject><subject>Comparative studies</subject><subject>Core Binding Factor Alpha 1 Subunit - metabolism</subject><subject>Immunohistochemistry</subject><subject>Integrin-Binding Sialoprotein</subject><subject>Nanomaterials</subject><subject>Nanostructures - chemistry</subject><subject>Organic acids</subject><subject>Original</subject><subject>Original Articles</subject><subject>Osteoblasts - metabolism</subject><subject>Osteoblasts - pathology</subject><subject>Osteogenesis</subject><subject>Phenotype</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Sialoglycoproteins - metabolism</subject><subject>Skull - pathology</subject><subject>Staining and Labeling</subject><subject>Tissue engineering</subject><subject>Tissue Scaffolds - chemistry</subject><subject>Tomography</subject><issn>1937-3341</issn><issn>1937-335X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>BENPR</sourceid><recordid>eNqNUV2L1TAQLaK46-oP8EWKD7615qtt8iKsdf2ARcFV8C1McyfXXHKTu2l7QX-9Kb2sH08SQoaZc05m5hTFU0pqSqR6OWGoJ4SaESJrIji_V5xTxbuK8-bb_btY0LPi0TjuCGlJ23UPi7NcELJR3Xmx6-P-AAkmd8Ty6gh-zmEMZbTlRwjRuiHFeSxvDFgb_caFbWljKl_HgOVn3GLAtBJcKPvkJmfAVzfuJ5Y9-CMkB758gxbNND4uHljwIz45vRfF17dXX_r31fWndx_6y-vKtERN1dAYggrkMDDZtsAUylahHYixjeGAG8oEk9I0HadcMq5sJ6ilCgdJhSGEXxSvVt3DPOxxYzBMCbw-JLeH9ENHcPrvSnDf9TYeNeuEkFxkgRcngRRvZxwnvXejQe8hYF6GZqRTghCWgc__Ae7inEIeTucNS9UpSTOoXkFb8KhdsDF_avLZ4N6ZvEfrcv6SCUFbQtTSP10JJsVxTGjvWqdEL77r7Hu-oBff9eJ75jz7c-bfjJPRGdCtgCUNIXiHA6bpP6R_AVeRvwQ</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Woo, Kyung Mi</creator><creator>Chen, Victor J.</creator><creator>Jung, Hong-Moon</creator><creator>Kim, Tae-Il</creator><creator>Shin, Hong-In</creator><creator>Baek, Jeong-Hwa</creator><creator>Ryoo, Hyun-Mo</creator><creator>Ma, Peter X.</creator><general>Mary Ann Liebert, Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>20090801</creationdate><title>Comparative Evaluation of Nanofibrous Scaffolding for Bone Regeneration in Critical-Size Calvarial Defects</title><author>Woo, Kyung Mi ; Chen, Victor J. ; Jung, Hong-Moon ; Kim, Tae-Il ; Shin, Hong-In ; Baek, Jeong-Hwa ; Ryoo, Hyun-Mo ; Ma, Peter X.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c609t-b5c0e9a8bb2866a29e869efb0cf5c3aed124288c573138239f741f19eb814c003</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Bone Regeneration</topic><topic>Bones</topic><topic>Collagen</topic><topic>Comparative studies</topic><topic>Core Binding Factor Alpha 1 Subunit - metabolism</topic><topic>Immunohistochemistry</topic><topic>Integrin-Binding Sialoprotein</topic><topic>Nanomaterials</topic><topic>Nanostructures - chemistry</topic><topic>Organic acids</topic><topic>Original</topic><topic>Original Articles</topic><topic>Osteoblasts - metabolism</topic><topic>Osteoblasts - pathology</topic><topic>Osteogenesis</topic><topic>Phenotype</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Sialoglycoproteins - metabolism</topic><topic>Skull - pathology</topic><topic>Staining and Labeling</topic><topic>Tissue engineering</topic><topic>Tissue Scaffolds - chemistry</topic><topic>Tomography</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Woo, Kyung Mi</creatorcontrib><creatorcontrib>Chen, Victor J.</creatorcontrib><creatorcontrib>Jung, Hong-Moon</creatorcontrib><creatorcontrib>Kim, Tae-Il</creatorcontrib><creatorcontrib>Shin, Hong-In</creatorcontrib><creatorcontrib>Baek, Jeong-Hwa</creatorcontrib><creatorcontrib>Ryoo, Hyun-Mo</creatorcontrib><creatorcontrib>Ma, Peter X.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Tissue engineering. Part A</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Woo, Kyung Mi</au><au>Chen, Victor J.</au><au>Jung, Hong-Moon</au><au>Kim, Tae-Il</au><au>Shin, Hong-In</au><au>Baek, Jeong-Hwa</au><au>Ryoo, Hyun-Mo</au><au>Ma, Peter X.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Comparative Evaluation of Nanofibrous Scaffolding for Bone Regeneration in Critical-Size Calvarial Defects</atitle><jtitle>Tissue engineering. Part A</jtitle><addtitle>Tissue Eng Part A</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>15</volume><issue>8</issue><spage>2155</spage><epage>2162</epage><pages>2155-2162</pages><issn>1937-3341</issn><eissn>1937-335X</eissn><abstract>In a previous study we found that nanofibrous poly(
l
-lactic acid) (PLLA) scaffolds mimicking collagen fibers in size were superior to solid-walled scaffolds in promoting osteoblast differentiation and bone formation
in vitro
. In this study we used an
in vivo
model to confirm the biological properties of nanofibrous PLLA scaffolds and to evaluate how effectively they support bone regeneration against solid-walled scaffolds. The scaffolds were implanted in critical-size defects made on rat calvarial bones. Compared with solid-walled scaffolds, nanofibrous scaffolds supported substantially more new bone tissue formation, which was confirmed by micro-computed tomography measurement and von Kossa staining. Goldner's trichrome staining showed abundant collagen deposition in nanofibrous scaffolds but not in the control solid-walled scaffolds. The cells in these scaffolds were immuno-stained strongly for Runx2 and bone sialoprotein (BSP). In contrast, solid-walled scaffolds implanted in the defects were stained weakly with trichrome, Runx2, and BSP. These
in vivo
results demonstrate that nanofibrous architecture enhances osteoblast differentiation and bone formation.</abstract><cop>United States</cop><pub>Mary Ann Liebert, Inc</pub><pmid>19348597</pmid><doi>10.1089/ten.tea.2008.0433</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1937-3341 |
ispartof | Tissue engineering. Part A, 2009-08, Vol.15 (8), p.2155-2162 |
issn | 1937-3341 1937-335X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2744834 |
source | Mary Ann Liebert Online Subscription; MEDLINE; Alma/SFX Local Collection |
subjects | Animals Bone Regeneration Bones Collagen Comparative studies Core Binding Factor Alpha 1 Subunit - metabolism Immunohistochemistry Integrin-Binding Sialoprotein Nanomaterials Nanostructures - chemistry Organic acids Original Original Articles Osteoblasts - metabolism Osteoblasts - pathology Osteogenesis Phenotype Rats Rats, Sprague-Dawley Sialoglycoproteins - metabolism Skull - pathology Staining and Labeling Tissue engineering Tissue Scaffolds - chemistry Tomography |
title | Comparative Evaluation of Nanofibrous Scaffolding for Bone Regeneration in Critical-Size Calvarial Defects |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-29T06%3A13%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Comparative%20Evaluation%20of%20Nanofibrous%20Scaffolding%20for%20Bone%20Regeneration%20in%20Critical-Size%20Calvarial%20Defects&rft.jtitle=Tissue%20engineering.%20Part%20A&rft.au=Woo,%20Kyung%20Mi&rft.date=2009-08-01&rft.volume=15&rft.issue=8&rft.spage=2155&rft.epage=2162&rft.pages=2155-2162&rft.issn=1937-3341&rft.eissn=1937-335X&rft_id=info:doi/10.1089/ten.tea.2008.0433&rft_dat=%3Cgale_pubme%3EA244160090%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=193897981&rft_id=info:pmid/19348597&rft_galeid=A244160090&rfr_iscdi=true |