Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex

Satellite cells purified from adult skeletal muscle can participate extensively in muscle regeneration and can also re-populate the satellite cell pool, suggesting that they have direct therapeutic potential for treating degenerative muscle diseases. The paired-box transcription factor Pax7 is requi...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nature cell biology 2008-01, Vol.10 (1), p.77-84
Hauptverfasser: McKinnell, Iain W, Greenblatt, Jack F, Rudnicki, Michael A, Addicks, Gregory C, Dilworth, F. Jeffrey, Ishibashi, Jeff, Le Grand, Fabien, Punch, Vincent G. J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 84
container_issue 1
container_start_page 77
container_title Nature cell biology
container_volume 10
creator McKinnell, Iain W
Greenblatt, Jack F
Rudnicki, Michael A
Addicks, Gregory C
Dilworth, F. Jeffrey
Ishibashi, Jeff
Le Grand, Fabien
Punch, Vincent G. J
description Satellite cells purified from adult skeletal muscle can participate extensively in muscle regeneration and can also re-populate the satellite cell pool, suggesting that they have direct therapeutic potential for treating degenerative muscle diseases. The paired-box transcription factor Pax7 is required for satellite cells to generate committed myogenic progenitors. In this study we undertook a multi-level approach to define the role of Pax7 in satellite cell function. Using comparative microarray analysis, we identified several novel and strongly regulated targets; in particular, we identified Myf5 as a gene whose expression was regulated by Pax7. Using siRNA, fluorescence-activated cell sorting (FACS) and chromatin immunoprecipitation (ChIP) studies we confirmed that Myf5 is directly regulated by Pax7 in myoblasts derived from satellite cells. Tandem affinity purification (TAP) and mass spectrometry were used to purify Pax7 together with its co-factors. This revealed that Pax7 associates with the Wdr5-Ash2L-MLL2 histone methyltransferase (HMT) complex that directs methylation of histone H3 lysine 4 (H3K4, refs 4-10). Binding of the Pax7-HMT complex to Myf5 resulted in H3K4 tri-methylation of surrounding chromatin. Thus, Pax7 induces chromatin modifications that stimulate transcriptional activation of target genes to regulate entry into the myogenic developmental programme.
doi_str_mv 10.1038/ncb1671
format Article
fullrecord <record><control><sourceid>gale_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2739814</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A186689412</galeid><sourcerecordid>A186689412</sourcerecordid><originalsourceid>FETCH-LOGICAL-c613t-478d547566c2c629fb152e27be6bc498735489760d559c2a3d0475b6821416c03</originalsourceid><addsrcrecordid>eNqFkmtrFDEUhgdR7EXxFyiDgpcPU5NMbvNFKMVLoaBY_RwymTO7KTPJmmTK7r9vlh1bV0UJ5Hae85Lz5hTFE4xOMKrlW2dazAW-VxxiKnhFuWjub_ecVaJuyEFxFOMVQphSJB4WB1gizhHDh8XlF70WpTbJXusEsRw3fgHOmjLP-dhuygAmTDaN4FLp-1KXSxuTd1COkJabIQXtYg9BRyiNH1cDrB8VD3o9RHg8r8fF9w_vv519qi4-fzw_O72oDMd1qqiQHaOCcW6I4aTpW8wIENECbw1tpKgZlY3gqGOsMUTXHcp0yyXBFHOD6uPi3U53NbUjdCa_MOhBrYIdddgor63ajzi7VAt_rUj2RGKaBV7NAsH_mCAmNdpoYBi0Az9FJTltGCGyzuTLf5ICYdGQGv0XJEjkqijL4PPfwCs_BZf9UoSQWjCGtmovdtBCD6Cs632uw2wV1SmWnMuGYpKpk79QeXQwWpO_qrf5fi_hzV5CZhKs00JPMarzy6_77OyRCT7GAP2tvxipbe-pufcy-ezX77jj5mbLwOsdEHPILSDclfyn1tMd6nSaAtxq_YzfAHYj6L8</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>222375500</pqid></control><display><type>article</type><title>Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex</title><source>MEDLINE</source><source>Nature</source><source>Alma/SFX Local Collection</source><creator>McKinnell, Iain W ; Greenblatt, Jack F ; Rudnicki, Michael A ; Addicks, Gregory C ; Dilworth, F. Jeffrey ; Ishibashi, Jeff ; Le Grand, Fabien ; Punch, Vincent G. J</creator><creatorcontrib>McKinnell, Iain W ; Greenblatt, Jack F ; Rudnicki, Michael A ; Addicks, Gregory C ; Dilworth, F. Jeffrey ; Ishibashi, Jeff ; Le Grand, Fabien ; Punch, Vincent G. J</creatorcontrib><description>Satellite cells purified from adult skeletal muscle can participate extensively in muscle regeneration and can also re-populate the satellite cell pool, suggesting that they have direct therapeutic potential for treating degenerative muscle diseases. The paired-box transcription factor Pax7 is required for satellite cells to generate committed myogenic progenitors. In this study we undertook a multi-level approach to define the role of Pax7 in satellite cell function. Using comparative microarray analysis, we identified several novel and strongly regulated targets; in particular, we identified Myf5 as a gene whose expression was regulated by Pax7. Using siRNA, fluorescence-activated cell sorting (FACS) and chromatin immunoprecipitation (ChIP) studies we confirmed that Myf5 is directly regulated by Pax7 in myoblasts derived from satellite cells. Tandem affinity purification (TAP) and mass spectrometry were used to purify Pax7 together with its co-factors. This revealed that Pax7 associates with the Wdr5-Ash2L-MLL2 histone methyltransferase (HMT) complex that directs methylation of histone H3 lysine 4 (H3K4, refs 4-10). Binding of the Pax7-HMT complex to Myf5 resulted in H3K4 tri-methylation of surrounding chromatin. Thus, Pax7 induces chromatin modifications that stimulate transcriptional activation of target genes to regulate entry into the myogenic developmental programme.</description><identifier>ISSN: 1465-7392</identifier><identifier>EISSN: 1476-4679</identifier><identifier>DOI: 10.1038/ncb1671</identifier><identifier>PMID: 18066051</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>Animals ; Biomedical and Life Sciences ; Cancer Research ; Cell Biology ; Cell Line ; Chromatin - metabolism ; Chromatin Immunoprecipitation ; Developmental Biology ; DNA binding proteins ; DNA-Binding Proteins - genetics ; DNA-Binding Proteins - metabolism ; Electrophoresis, Polyacrylamide Gel ; Flow Cytometry ; Fluorescence ; Gene Expression Regulation ; Genes ; Genetic aspects ; Genetic regulation ; Histone Methyltransferases ; Histone-Lysine N-Methyltransferase - metabolism ; Histones - metabolism ; Immunoprecipitation ; letter ; Life Sciences ; Mass spectrometry ; Methylation ; Methyltransferases ; Mice ; Mice, Inbred C57BL ; Musculoskeletal system ; Myeloid-Lymphoid Leukemia Protein - genetics ; Myeloid-Lymphoid Leukemia Protein - metabolism ; Myoblasts - cytology ; Myoblasts - metabolism ; Myogenic Regulatory Factor 5 - genetics ; Myogenic Regulatory Factor 5 - metabolism ; Nuclear Proteins - genetics ; Nuclear Proteins - metabolism ; Oligonucleotide Array Sequence Analysis ; PAX7 Transcription Factor - genetics ; PAX7 Transcription Factor - metabolism ; Physiological aspects ; Protein Binding ; Protein Methyltransferases ; Proteins ; Proteins - genetics ; Proteins - metabolism ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Small Interfering - genetics ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Stem Cells ; Transcription Factors - genetics ; Transcription Factors - metabolism ; Transcription, Genetic</subject><ispartof>Nature cell biology, 2008-01, Vol.10 (1), p.77-84</ispartof><rights>Springer Nature Limited 2008</rights><rights>COPYRIGHT 2008 Nature Publishing Group</rights><rights>Copyright Nature Publishing Group Jan 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c613t-478d547566c2c629fb152e27be6bc498735489760d559c2a3d0475b6821416c03</citedby><cites>FETCH-LOGICAL-c613t-478d547566c2c629fb152e27be6bc498735489760d559c2a3d0475b6821416c03</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,2727,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18066051$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>McKinnell, Iain W</creatorcontrib><creatorcontrib>Greenblatt, Jack F</creatorcontrib><creatorcontrib>Rudnicki, Michael A</creatorcontrib><creatorcontrib>Addicks, Gregory C</creatorcontrib><creatorcontrib>Dilworth, F. Jeffrey</creatorcontrib><creatorcontrib>Ishibashi, Jeff</creatorcontrib><creatorcontrib>Le Grand, Fabien</creatorcontrib><creatorcontrib>Punch, Vincent G. J</creatorcontrib><title>Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex</title><title>Nature cell biology</title><addtitle>Nat Cell Biol</addtitle><addtitle>Nat Cell Biol</addtitle><description>Satellite cells purified from adult skeletal muscle can participate extensively in muscle regeneration and can also re-populate the satellite cell pool, suggesting that they have direct therapeutic potential for treating degenerative muscle diseases. The paired-box transcription factor Pax7 is required for satellite cells to generate committed myogenic progenitors. In this study we undertook a multi-level approach to define the role of Pax7 in satellite cell function. Using comparative microarray analysis, we identified several novel and strongly regulated targets; in particular, we identified Myf5 as a gene whose expression was regulated by Pax7. Using siRNA, fluorescence-activated cell sorting (FACS) and chromatin immunoprecipitation (ChIP) studies we confirmed that Myf5 is directly regulated by Pax7 in myoblasts derived from satellite cells. Tandem affinity purification (TAP) and mass spectrometry were used to purify Pax7 together with its co-factors. This revealed that Pax7 associates with the Wdr5-Ash2L-MLL2 histone methyltransferase (HMT) complex that directs methylation of histone H3 lysine 4 (H3K4, refs 4-10). Binding of the Pax7-HMT complex to Myf5 resulted in H3K4 tri-methylation of surrounding chromatin. Thus, Pax7 induces chromatin modifications that stimulate transcriptional activation of target genes to regulate entry into the myogenic developmental programme.</description><subject>Animals</subject><subject>Biomedical and Life Sciences</subject><subject>Cancer Research</subject><subject>Cell Biology</subject><subject>Cell Line</subject><subject>Chromatin - metabolism</subject><subject>Chromatin Immunoprecipitation</subject><subject>Developmental Biology</subject><subject>DNA binding proteins</subject><subject>DNA-Binding Proteins - genetics</subject><subject>DNA-Binding Proteins - metabolism</subject><subject>Electrophoresis, Polyacrylamide Gel</subject><subject>Flow Cytometry</subject><subject>Fluorescence</subject><subject>Gene Expression Regulation</subject><subject>Genes</subject><subject>Genetic aspects</subject><subject>Genetic regulation</subject><subject>Histone Methyltransferases</subject><subject>Histone-Lysine N-Methyltransferase - metabolism</subject><subject>Histones - metabolism</subject><subject>Immunoprecipitation</subject><subject>letter</subject><subject>Life Sciences</subject><subject>Mass spectrometry</subject><subject>Methylation</subject><subject>Methyltransferases</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Musculoskeletal system</subject><subject>Myeloid-Lymphoid Leukemia Protein - genetics</subject><subject>Myeloid-Lymphoid Leukemia Protein - metabolism</subject><subject>Myoblasts - cytology</subject><subject>Myoblasts - metabolism</subject><subject>Myogenic Regulatory Factor 5 - genetics</subject><subject>Myogenic Regulatory Factor 5 - metabolism</subject><subject>Nuclear Proteins - genetics</subject><subject>Nuclear Proteins - metabolism</subject><subject>Oligonucleotide Array Sequence Analysis</subject><subject>PAX7 Transcription Factor - genetics</subject><subject>PAX7 Transcription Factor - metabolism</subject><subject>Physiological aspects</subject><subject>Protein Binding</subject><subject>Protein Methyltransferases</subject><subject>Proteins</subject><subject>Proteins - genetics</subject><subject>Proteins - metabolism</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Small Interfering - genetics</subject><subject>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</subject><subject>Stem Cells</subject><subject>Transcription Factors - genetics</subject><subject>Transcription Factors - metabolism</subject><subject>Transcription, Genetic</subject><issn>1465-7392</issn><issn>1476-4679</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkmtrFDEUhgdR7EXxFyiDgpcPU5NMbvNFKMVLoaBY_RwymTO7KTPJmmTK7r9vlh1bV0UJ5Hae85Lz5hTFE4xOMKrlW2dazAW-VxxiKnhFuWjub_ecVaJuyEFxFOMVQphSJB4WB1gizhHDh8XlF70WpTbJXusEsRw3fgHOmjLP-dhuygAmTDaN4FLp-1KXSxuTd1COkJabIQXtYg9BRyiNH1cDrB8VD3o9RHg8r8fF9w_vv519qi4-fzw_O72oDMd1qqiQHaOCcW6I4aTpW8wIENECbw1tpKgZlY3gqGOsMUTXHcp0yyXBFHOD6uPi3U53NbUjdCa_MOhBrYIdddgor63ajzi7VAt_rUj2RGKaBV7NAsH_mCAmNdpoYBi0Az9FJTltGCGyzuTLf5ICYdGQGv0XJEjkqijL4PPfwCs_BZf9UoSQWjCGtmovdtBCD6Cs632uw2wV1SmWnMuGYpKpk79QeXQwWpO_qrf5fi_hzV5CZhKs00JPMarzy6_77OyRCT7GAP2tvxipbe-pufcy-ezX77jj5mbLwOsdEHPILSDclfyn1tMd6nSaAtxq_YzfAHYj6L8</recordid><startdate>20080101</startdate><enddate>20080101</enddate><creator>McKinnell, Iain W</creator><creator>Greenblatt, Jack F</creator><creator>Rudnicki, Michael A</creator><creator>Addicks, Gregory C</creator><creator>Dilworth, F. Jeffrey</creator><creator>Ishibashi, Jeff</creator><creator>Le Grand, Fabien</creator><creator>Punch, Vincent G. J</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7N</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080101</creationdate><title>Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex</title><author>McKinnell, Iain W ; Greenblatt, Jack F ; Rudnicki, Michael A ; Addicks, Gregory C ; Dilworth, F. Jeffrey ; Ishibashi, Jeff ; Le Grand, Fabien ; Punch, Vincent G. J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c613t-478d547566c2c629fb152e27be6bc498735489760d559c2a3d0475b6821416c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Biomedical and Life Sciences</topic><topic>Cancer Research</topic><topic>Cell Biology</topic><topic>Cell Line</topic><topic>Chromatin - metabolism</topic><topic>Chromatin Immunoprecipitation</topic><topic>Developmental Biology</topic><topic>DNA binding proteins</topic><topic>DNA-Binding Proteins - genetics</topic><topic>DNA-Binding Proteins - metabolism</topic><topic>Electrophoresis, Polyacrylamide Gel</topic><topic>Flow Cytometry</topic><topic>Fluorescence</topic><topic>Gene Expression Regulation</topic><topic>Genes</topic><topic>Genetic aspects</topic><topic>Genetic regulation</topic><topic>Histone Methyltransferases</topic><topic>Histone-Lysine N-Methyltransferase - metabolism</topic><topic>Histones - metabolism</topic><topic>Immunoprecipitation</topic><topic>letter</topic><topic>Life Sciences</topic><topic>Mass spectrometry</topic><topic>Methylation</topic><topic>Methyltransferases</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Musculoskeletal system</topic><topic>Myeloid-Lymphoid Leukemia Protein - genetics</topic><topic>Myeloid-Lymphoid Leukemia Protein - metabolism</topic><topic>Myoblasts - cytology</topic><topic>Myoblasts - metabolism</topic><topic>Myogenic Regulatory Factor 5 - genetics</topic><topic>Myogenic Regulatory Factor 5 - metabolism</topic><topic>Nuclear Proteins - genetics</topic><topic>Nuclear Proteins - metabolism</topic><topic>Oligonucleotide Array Sequence Analysis</topic><topic>PAX7 Transcription Factor - genetics</topic><topic>PAX7 Transcription Factor - metabolism</topic><topic>Physiological aspects</topic><topic>Protein Binding</topic><topic>Protein Methyltransferases</topic><topic>Proteins</topic><topic>Proteins - genetics</topic><topic>Proteins - metabolism</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Small Interfering - genetics</topic><topic>Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization</topic><topic>Stem Cells</topic><topic>Transcription Factors - genetics</topic><topic>Transcription Factors - metabolism</topic><topic>Transcription, Genetic</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>McKinnell, Iain W</creatorcontrib><creatorcontrib>Greenblatt, Jack F</creatorcontrib><creatorcontrib>Rudnicki, Michael A</creatorcontrib><creatorcontrib>Addicks, Gregory C</creatorcontrib><creatorcontrib>Dilworth, F. Jeffrey</creatorcontrib><creatorcontrib>Ishibashi, Jeff</creatorcontrib><creatorcontrib>Le Grand, Fabien</creatorcontrib><creatorcontrib>Punch, Vincent G. J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nature cell biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>McKinnell, Iain W</au><au>Greenblatt, Jack F</au><au>Rudnicki, Michael A</au><au>Addicks, Gregory C</au><au>Dilworth, F. Jeffrey</au><au>Ishibashi, Jeff</au><au>Le Grand, Fabien</au><au>Punch, Vincent G. J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex</atitle><jtitle>Nature cell biology</jtitle><stitle>Nat Cell Biol</stitle><addtitle>Nat Cell Biol</addtitle><date>2008-01-01</date><risdate>2008</risdate><volume>10</volume><issue>1</issue><spage>77</spage><epage>84</epage><pages>77-84</pages><issn>1465-7392</issn><eissn>1476-4679</eissn><abstract>Satellite cells purified from adult skeletal muscle can participate extensively in muscle regeneration and can also re-populate the satellite cell pool, suggesting that they have direct therapeutic potential for treating degenerative muscle diseases. The paired-box transcription factor Pax7 is required for satellite cells to generate committed myogenic progenitors. In this study we undertook a multi-level approach to define the role of Pax7 in satellite cell function. Using comparative microarray analysis, we identified several novel and strongly regulated targets; in particular, we identified Myf5 as a gene whose expression was regulated by Pax7. Using siRNA, fluorescence-activated cell sorting (FACS) and chromatin immunoprecipitation (ChIP) studies we confirmed that Myf5 is directly regulated by Pax7 in myoblasts derived from satellite cells. Tandem affinity purification (TAP) and mass spectrometry were used to purify Pax7 together with its co-factors. This revealed that Pax7 associates with the Wdr5-Ash2L-MLL2 histone methyltransferase (HMT) complex that directs methylation of histone H3 lysine 4 (H3K4, refs 4-10). Binding of the Pax7-HMT complex to Myf5 resulted in H3K4 tri-methylation of surrounding chromatin. Thus, Pax7 induces chromatin modifications that stimulate transcriptional activation of target genes to regulate entry into the myogenic developmental programme.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>18066051</pmid><doi>10.1038/ncb1671</doi><tpages>8</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1465-7392
ispartof Nature cell biology, 2008-01, Vol.10 (1), p.77-84
issn 1465-7392
1476-4679
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2739814
source MEDLINE; Nature; Alma/SFX Local Collection
subjects Animals
Biomedical and Life Sciences
Cancer Research
Cell Biology
Cell Line
Chromatin - metabolism
Chromatin Immunoprecipitation
Developmental Biology
DNA binding proteins
DNA-Binding Proteins - genetics
DNA-Binding Proteins - metabolism
Electrophoresis, Polyacrylamide Gel
Flow Cytometry
Fluorescence
Gene Expression Regulation
Genes
Genetic aspects
Genetic regulation
Histone Methyltransferases
Histone-Lysine N-Methyltransferase - metabolism
Histones - metabolism
Immunoprecipitation
letter
Life Sciences
Mass spectrometry
Methylation
Methyltransferases
Mice
Mice, Inbred C57BL
Musculoskeletal system
Myeloid-Lymphoid Leukemia Protein - genetics
Myeloid-Lymphoid Leukemia Protein - metabolism
Myoblasts - cytology
Myoblasts - metabolism
Myogenic Regulatory Factor 5 - genetics
Myogenic Regulatory Factor 5 - metabolism
Nuclear Proteins - genetics
Nuclear Proteins - metabolism
Oligonucleotide Array Sequence Analysis
PAX7 Transcription Factor - genetics
PAX7 Transcription Factor - metabolism
Physiological aspects
Protein Binding
Protein Methyltransferases
Proteins
Proteins - genetics
Proteins - metabolism
Reverse Transcriptase Polymerase Chain Reaction
RNA, Small Interfering - genetics
Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
Stem Cells
Transcription Factors - genetics
Transcription Factors - metabolism
Transcription, Genetic
title Pax7 activates myogenic genes by recruitment of a histone methyltransferase complex
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T18%3A45%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Pax7%20activates%20myogenic%20genes%20by%20recruitment%20of%20a%20histone%20methyltransferase%20complex&rft.jtitle=Nature%20cell%20biology&rft.au=McKinnell,%20Iain%20W&rft.date=2008-01-01&rft.volume=10&rft.issue=1&rft.spage=77&rft.epage=84&rft.pages=77-84&rft.issn=1465-7392&rft.eissn=1476-4679&rft_id=info:doi/10.1038/ncb1671&rft_dat=%3Cgale_pubme%3EA186689412%3C/gale_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=222375500&rft_id=info:pmid/18066051&rft_galeid=A186689412&rfr_iscdi=true