Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism
The purposes of this study were to characterize the direct effect of the C-terminal fragment of fibrinogen gamma chain (gammaC) on microvascular endothelial permeability and to examine its molecular mechanism of action. Intravital microscopy was performed to measure albumin extravasation in intact m...
Gespeichert in:
Veröffentlicht in: | Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2009-03, Vol.29 (3), p.394-400 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 400 |
---|---|
container_issue | 3 |
container_start_page | 394 |
container_title | Arteriosclerosis, thrombosis, and vascular biology |
container_volume | 29 |
creator | Guo, Mingzhang Daines, Dayle Tang, Jing Shen, Qiang Perrin, Rachel M Takada, Yoshikazu Yuan, Sarah Y Wu, Mack H |
description | The purposes of this study were to characterize the direct effect of the C-terminal fragment of fibrinogen gamma chain (gammaC) on microvascular endothelial permeability and to examine its molecular mechanism of action.
Intravital microscopy was performed to measure albumin extravasation in intact mesenteric microvasculature, followed by quantification of hydraulic conductivity in single perfused microvessels. Transendothelial electric resistance was measured in microvascular endothelial cells in combination with immunoblotting and immunocytochemistry. The results show that gammaC induced time- and concentration-dependent increases in protein transvascular flux and water permeability and decreases in endothelial barrier function, coupled with Rho GTPase activation, myosin light chain phosphorylation, and stress fiber formation. Depletion of RhoA via siRNA knockdown or pharmacological inhibition of RhoA signaling attenuated gammaC-induced barrier dysfunction. Imaging analyses demonstrated binding of gammaC to endothelial cells; the interaction was inhibited during blockage of the alphavbeta3 integrin. Furthermore, in vivo experiments showed that the microvascular leak response to gammaC was attenuated in integrin beta3(-/-) animals.
Fibrinogen-gamma C terminus directly interacts with the microvascular endothelium causing fluid and protein leak. The endothelial response to gammaC involves an integrin receptor-mediated RhoA-dependent signaling pathway that leads to paracellular hyperpermeability. |
doi_str_mv | 10.1161/ATVBAHA.108.180950 |
format | Article |
fullrecord | <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2737386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19122172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-dad43a7644cbc2150aef5d1b80815085928aa1d85744595394f52163b2fb3c9c3</originalsourceid><addsrcrecordid>eNpVkdtq3DAQhkVpaQ7tC-Si6AW00dGWbwrukkMhUChpb81Ykr1qLXmRvAt5kTxv1OySJlczw-j__hE_QheMrhir2GV7__tbe9uuGNUrpmmj6Dt0yhSXRFaiel96WjdEVZKfoLOc_1BKJef0IzphDeOc1fwUPV77Pvk4jy6SEUIAvCaLS8FHmPCQYAwuLhn7aHfGYRftvGzc5Muyh5S8S9g-5GEXzeLniCFaHLxJ8x6y2U2Q8OTgL957KITFjcWJBGc9LM4-P_65mVti3baAiw8Ozmwg-hw-oQ8DTNl9PtZz9Ov66n59S-5-3Hxft3fESEoXYsFKAXUlpekNZ4qCG5Rlvaa6DFo1XAMwq1UtpWqUaOSgOKtEz4demMaIc_T1wN3u-nKYKUckmLpt8gHSQzeD795uot9047zveC1qoasC4AdA-XTOyQ0vWka7fyl1x5TKrLtDSkX05bXrf8kxFvEEHH2S9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>Alma/SFX Local Collection</source><creator>Guo, Mingzhang ; Daines, Dayle ; Tang, Jing ; Shen, Qiang ; Perrin, Rachel M ; Takada, Yoshikazu ; Yuan, Sarah Y ; Wu, Mack H</creator><creatorcontrib>Guo, Mingzhang ; Daines, Dayle ; Tang, Jing ; Shen, Qiang ; Perrin, Rachel M ; Takada, Yoshikazu ; Yuan, Sarah Y ; Wu, Mack H</creatorcontrib><description>The purposes of this study were to characterize the direct effect of the C-terminal fragment of fibrinogen gamma chain (gammaC) on microvascular endothelial permeability and to examine its molecular mechanism of action.
Intravital microscopy was performed to measure albumin extravasation in intact mesenteric microvasculature, followed by quantification of hydraulic conductivity in single perfused microvessels. Transendothelial electric resistance was measured in microvascular endothelial cells in combination with immunoblotting and immunocytochemistry. The results show that gammaC induced time- and concentration-dependent increases in protein transvascular flux and water permeability and decreases in endothelial barrier function, coupled with Rho GTPase activation, myosin light chain phosphorylation, and stress fiber formation. Depletion of RhoA via siRNA knockdown or pharmacological inhibition of RhoA signaling attenuated gammaC-induced barrier dysfunction. Imaging analyses demonstrated binding of gammaC to endothelial cells; the interaction was inhibited during blockage of the alphavbeta3 integrin. Furthermore, in vivo experiments showed that the microvascular leak response to gammaC was attenuated in integrin beta3(-/-) animals.
Fibrinogen-gamma C terminus directly interacts with the microvascular endothelium causing fluid and protein leak. The endothelial response to gammaC involves an integrin receptor-mediated RhoA-dependent signaling pathway that leads to paracellular hyperpermeability.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.108.180950</identifier><identifier>PMID: 19122172</identifier><language>eng</language><publisher>United States</publisher><subject>Albumins - metabolism ; Amides - pharmacology ; Animals ; Capillary Permeability - drug effects ; Dose-Response Relationship, Drug ; Electric Impedance ; Endothelium, Vascular - drug effects ; Endothelium, Vascular - metabolism ; Endothelium, Vascular - physiopathology ; Fibrinogen - metabolism ; Humans ; Integrin alphaVbeta3 - genetics ; Integrin alphaVbeta3 - metabolism ; Integrin beta3 - genetics ; Integrin beta3 - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microcirculation - drug effects ; Microscopy, Video ; Myosin Light Chains - metabolism ; Peptide Fragments - metabolism ; Phosphorylation ; Protein Binding ; Protein Kinase Inhibitors - pharmacology ; Pyridines - pharmacology ; Rats ; Rats, Sprague-Dawley ; Recombinant Proteins - metabolism ; rhoA GTP-Binding Protein - antagonists & inhibitors ; rhoA GTP-Binding Protein - genetics ; rhoA GTP-Binding Protein - metabolism ; RNA Interference ; RNA, Small Interfering - metabolism ; Splanchnic Circulation ; Stress Fibers - metabolism ; Time Factors</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2009-03, Vol.29 (3), p.394-400</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-dad43a7644cbc2150aef5d1b80815085928aa1d85744595394f52163b2fb3c9c3</citedby><cites>FETCH-LOGICAL-c400t-dad43a7644cbc2150aef5d1b80815085928aa1d85744595394f52163b2fb3c9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19122172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Mingzhang</creatorcontrib><creatorcontrib>Daines, Dayle</creatorcontrib><creatorcontrib>Tang, Jing</creatorcontrib><creatorcontrib>Shen, Qiang</creatorcontrib><creatorcontrib>Perrin, Rachel M</creatorcontrib><creatorcontrib>Takada, Yoshikazu</creatorcontrib><creatorcontrib>Yuan, Sarah Y</creatorcontrib><creatorcontrib>Wu, Mack H</creatorcontrib><title>Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>The purposes of this study were to characterize the direct effect of the C-terminal fragment of fibrinogen gamma chain (gammaC) on microvascular endothelial permeability and to examine its molecular mechanism of action.
Intravital microscopy was performed to measure albumin extravasation in intact mesenteric microvasculature, followed by quantification of hydraulic conductivity in single perfused microvessels. Transendothelial electric resistance was measured in microvascular endothelial cells in combination with immunoblotting and immunocytochemistry. The results show that gammaC induced time- and concentration-dependent increases in protein transvascular flux and water permeability and decreases in endothelial barrier function, coupled with Rho GTPase activation, myosin light chain phosphorylation, and stress fiber formation. Depletion of RhoA via siRNA knockdown or pharmacological inhibition of RhoA signaling attenuated gammaC-induced barrier dysfunction. Imaging analyses demonstrated binding of gammaC to endothelial cells; the interaction was inhibited during blockage of the alphavbeta3 integrin. Furthermore, in vivo experiments showed that the microvascular leak response to gammaC was attenuated in integrin beta3(-/-) animals.
Fibrinogen-gamma C terminus directly interacts with the microvascular endothelium causing fluid and protein leak. The endothelial response to gammaC involves an integrin receptor-mediated RhoA-dependent signaling pathway that leads to paracellular hyperpermeability.</description><subject>Albumins - metabolism</subject><subject>Amides - pharmacology</subject><subject>Animals</subject><subject>Capillary Permeability - drug effects</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electric Impedance</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Endothelium, Vascular - physiopathology</subject><subject>Fibrinogen - metabolism</subject><subject>Humans</subject><subject>Integrin alphaVbeta3 - genetics</subject><subject>Integrin alphaVbeta3 - metabolism</subject><subject>Integrin beta3 - genetics</subject><subject>Integrin beta3 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microcirculation - drug effects</subject><subject>Microscopy, Video</subject><subject>Myosin Light Chains - metabolism</subject><subject>Peptide Fragments - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Pyridines - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Recombinant Proteins - metabolism</subject><subject>rhoA GTP-Binding Protein - antagonists & inhibitors</subject><subject>rhoA GTP-Binding Protein - genetics</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Splanchnic Circulation</subject><subject>Stress Fibers - metabolism</subject><subject>Time Factors</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkdtq3DAQhkVpaQ7tC-Si6AW00dGWbwrukkMhUChpb81Ykr1qLXmRvAt5kTxv1OySJlczw-j__hE_QheMrhir2GV7__tbe9uuGNUrpmmj6Dt0yhSXRFaiel96WjdEVZKfoLOc_1BKJef0IzphDeOc1fwUPV77Pvk4jy6SEUIAvCaLS8FHmPCQYAwuLhn7aHfGYRftvGzc5Muyh5S8S9g-5GEXzeLniCFaHLxJ8x6y2U2Q8OTgL957KITFjcWJBGc9LM4-P_65mVti3baAiw8Ozmwg-hw-oQ8DTNl9PtZz9Ov66n59S-5-3Hxft3fESEoXYsFKAXUlpekNZ4qCG5Rlvaa6DFo1XAMwq1UtpWqUaOSgOKtEz4demMaIc_T1wN3u-nKYKUckmLpt8gHSQzeD795uot9047zveC1qoasC4AdA-XTOyQ0vWka7fyl1x5TKrLtDSkX05bXrf8kxFvEEHH2S9w</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Guo, Mingzhang</creator><creator>Daines, Dayle</creator><creator>Tang, Jing</creator><creator>Shen, Qiang</creator><creator>Perrin, Rachel M</creator><creator>Takada, Yoshikazu</creator><creator>Yuan, Sarah Y</creator><creator>Wu, Mack H</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20090301</creationdate><title>Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism</title><author>Guo, Mingzhang ; Daines, Dayle ; Tang, Jing ; Shen, Qiang ; Perrin, Rachel M ; Takada, Yoshikazu ; Yuan, Sarah Y ; Wu, Mack H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-dad43a7644cbc2150aef5d1b80815085928aa1d85744595394f52163b2fb3c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Albumins - metabolism</topic><topic>Amides - pharmacology</topic><topic>Animals</topic><topic>Capillary Permeability - drug effects</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electric Impedance</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Endothelium, Vascular - physiopathology</topic><topic>Fibrinogen - metabolism</topic><topic>Humans</topic><topic>Integrin alphaVbeta3 - genetics</topic><topic>Integrin alphaVbeta3 - metabolism</topic><topic>Integrin beta3 - genetics</topic><topic>Integrin beta3 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microcirculation - drug effects</topic><topic>Microscopy, Video</topic><topic>Myosin Light Chains - metabolism</topic><topic>Peptide Fragments - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Pyridines - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Recombinant Proteins - metabolism</topic><topic>rhoA GTP-Binding Protein - antagonists & inhibitors</topic><topic>rhoA GTP-Binding Protein - genetics</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Splanchnic Circulation</topic><topic>Stress Fibers - metabolism</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Mingzhang</creatorcontrib><creatorcontrib>Daines, Dayle</creatorcontrib><creatorcontrib>Tang, Jing</creatorcontrib><creatorcontrib>Shen, Qiang</creatorcontrib><creatorcontrib>Perrin, Rachel M</creatorcontrib><creatorcontrib>Takada, Yoshikazu</creatorcontrib><creatorcontrib>Yuan, Sarah Y</creatorcontrib><creatorcontrib>Wu, Mack H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Mingzhang</au><au>Daines, Dayle</au><au>Tang, Jing</au><au>Shen, Qiang</au><au>Perrin, Rachel M</au><au>Takada, Yoshikazu</au><au>Yuan, Sarah Y</au><au>Wu, Mack H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>29</volume><issue>3</issue><spage>394</spage><epage>400</epage><pages>394-400</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><abstract>The purposes of this study were to characterize the direct effect of the C-terminal fragment of fibrinogen gamma chain (gammaC) on microvascular endothelial permeability and to examine its molecular mechanism of action.
Intravital microscopy was performed to measure albumin extravasation in intact mesenteric microvasculature, followed by quantification of hydraulic conductivity in single perfused microvessels. Transendothelial electric resistance was measured in microvascular endothelial cells in combination with immunoblotting and immunocytochemistry. The results show that gammaC induced time- and concentration-dependent increases in protein transvascular flux and water permeability and decreases in endothelial barrier function, coupled with Rho GTPase activation, myosin light chain phosphorylation, and stress fiber formation. Depletion of RhoA via siRNA knockdown or pharmacological inhibition of RhoA signaling attenuated gammaC-induced barrier dysfunction. Imaging analyses demonstrated binding of gammaC to endothelial cells; the interaction was inhibited during blockage of the alphavbeta3 integrin. Furthermore, in vivo experiments showed that the microvascular leak response to gammaC was attenuated in integrin beta3(-/-) animals.
Fibrinogen-gamma C terminus directly interacts with the microvascular endothelium causing fluid and protein leak. The endothelial response to gammaC involves an integrin receptor-mediated RhoA-dependent signaling pathway that leads to paracellular hyperpermeability.</abstract><cop>United States</cop><pmid>19122172</pmid><doi>10.1161/ATVBAHA.108.180950</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1079-5642 |
ispartof | Arteriosclerosis, thrombosis, and vascular biology, 2009-03, Vol.29 (3), p.394-400 |
issn | 1079-5642 1524-4636 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2737386 |
source | MEDLINE; Journals@Ovid Complete; Alma/SFX Local Collection |
subjects | Albumins - metabolism Amides - pharmacology Animals Capillary Permeability - drug effects Dose-Response Relationship, Drug Electric Impedance Endothelium, Vascular - drug effects Endothelium, Vascular - metabolism Endothelium, Vascular - physiopathology Fibrinogen - metabolism Humans Integrin alphaVbeta3 - genetics Integrin alphaVbeta3 - metabolism Integrin beta3 - genetics Integrin beta3 - metabolism Mice Mice, Inbred C57BL Mice, Knockout Microcirculation - drug effects Microscopy, Video Myosin Light Chains - metabolism Peptide Fragments - metabolism Phosphorylation Protein Binding Protein Kinase Inhibitors - pharmacology Pyridines - pharmacology Rats Rats, Sprague-Dawley Recombinant Proteins - metabolism rhoA GTP-Binding Protein - antagonists & inhibitors rhoA GTP-Binding Protein - genetics rhoA GTP-Binding Protein - metabolism RNA Interference RNA, Small Interfering - metabolism Splanchnic Circulation Stress Fibers - metabolism Time Factors |
title | Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fibrinogen-gamma%20C-terminal%20fragments%20induce%20endothelial%20barrier%20dysfunction%20and%20microvascular%20leak%20via%20integrin-mediated%20and%20RhoA-dependent%20mechanism&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Guo,%20Mingzhang&rft.date=2009-03-01&rft.volume=29&rft.issue=3&rft.spage=394&rft.epage=400&rft.pages=394-400&rft.issn=1079-5642&rft.eissn=1524-4636&rft_id=info:doi/10.1161/ATVBAHA.108.180950&rft_dat=%3Cpubmed_cross%3E19122172%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19122172&rfr_iscdi=true |