Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism

The purposes of this study were to characterize the direct effect of the C-terminal fragment of fibrinogen gamma chain (gammaC) on microvascular endothelial permeability and to examine its molecular mechanism of action. Intravital microscopy was performed to measure albumin extravasation in intact m...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Arteriosclerosis, thrombosis, and vascular biology thrombosis, and vascular biology, 2009-03, Vol.29 (3), p.394-400
Hauptverfasser: Guo, Mingzhang, Daines, Dayle, Tang, Jing, Shen, Qiang, Perrin, Rachel M, Takada, Yoshikazu, Yuan, Sarah Y, Wu, Mack H
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 400
container_issue 3
container_start_page 394
container_title Arteriosclerosis, thrombosis, and vascular biology
container_volume 29
creator Guo, Mingzhang
Daines, Dayle
Tang, Jing
Shen, Qiang
Perrin, Rachel M
Takada, Yoshikazu
Yuan, Sarah Y
Wu, Mack H
description The purposes of this study were to characterize the direct effect of the C-terminal fragment of fibrinogen gamma chain (gammaC) on microvascular endothelial permeability and to examine its molecular mechanism of action. Intravital microscopy was performed to measure albumin extravasation in intact mesenteric microvasculature, followed by quantification of hydraulic conductivity in single perfused microvessels. Transendothelial electric resistance was measured in microvascular endothelial cells in combination with immunoblotting and immunocytochemistry. The results show that gammaC induced time- and concentration-dependent increases in protein transvascular flux and water permeability and decreases in endothelial barrier function, coupled with Rho GTPase activation, myosin light chain phosphorylation, and stress fiber formation. Depletion of RhoA via siRNA knockdown or pharmacological inhibition of RhoA signaling attenuated gammaC-induced barrier dysfunction. Imaging analyses demonstrated binding of gammaC to endothelial cells; the interaction was inhibited during blockage of the alphavbeta3 integrin. Furthermore, in vivo experiments showed that the microvascular leak response to gammaC was attenuated in integrin beta3(-/-) animals. Fibrinogen-gamma C terminus directly interacts with the microvascular endothelium causing fluid and protein leak. The endothelial response to gammaC involves an integrin receptor-mediated RhoA-dependent signaling pathway that leads to paracellular hyperpermeability.
doi_str_mv 10.1161/ATVBAHA.108.180950
format Article
fullrecord <record><control><sourceid>pubmed_cross</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2737386</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19122172</sourcerecordid><originalsourceid>FETCH-LOGICAL-c400t-dad43a7644cbc2150aef5d1b80815085928aa1d85744595394f52163b2fb3c9c3</originalsourceid><addsrcrecordid>eNpVkdtq3DAQhkVpaQ7tC-Si6AW00dGWbwrukkMhUChpb81Ykr1qLXmRvAt5kTxv1OySJlczw-j__hE_QheMrhir2GV7__tbe9uuGNUrpmmj6Dt0yhSXRFaiel96WjdEVZKfoLOc_1BKJef0IzphDeOc1fwUPV77Pvk4jy6SEUIAvCaLS8FHmPCQYAwuLhn7aHfGYRftvGzc5Muyh5S8S9g-5GEXzeLniCFaHLxJ8x6y2U2Q8OTgL957KITFjcWJBGc9LM4-P_65mVti3baAiw8Ozmwg-hw-oQ8DTNl9PtZz9Ov66n59S-5-3Hxft3fESEoXYsFKAXUlpekNZ4qCG5Rlvaa6DFo1XAMwq1UtpWqUaOSgOKtEz4demMaIc_T1wN3u-nKYKUckmLpt8gHSQzeD795uot9047zveC1qoasC4AdA-XTOyQ0vWka7fyl1x5TKrLtDSkX05bXrf8kxFvEEHH2S9w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism</title><source>MEDLINE</source><source>Journals@Ovid Complete</source><source>Alma/SFX Local Collection</source><creator>Guo, Mingzhang ; Daines, Dayle ; Tang, Jing ; Shen, Qiang ; Perrin, Rachel M ; Takada, Yoshikazu ; Yuan, Sarah Y ; Wu, Mack H</creator><creatorcontrib>Guo, Mingzhang ; Daines, Dayle ; Tang, Jing ; Shen, Qiang ; Perrin, Rachel M ; Takada, Yoshikazu ; Yuan, Sarah Y ; Wu, Mack H</creatorcontrib><description>The purposes of this study were to characterize the direct effect of the C-terminal fragment of fibrinogen gamma chain (gammaC) on microvascular endothelial permeability and to examine its molecular mechanism of action. Intravital microscopy was performed to measure albumin extravasation in intact mesenteric microvasculature, followed by quantification of hydraulic conductivity in single perfused microvessels. Transendothelial electric resistance was measured in microvascular endothelial cells in combination with immunoblotting and immunocytochemistry. The results show that gammaC induced time- and concentration-dependent increases in protein transvascular flux and water permeability and decreases in endothelial barrier function, coupled with Rho GTPase activation, myosin light chain phosphorylation, and stress fiber formation. Depletion of RhoA via siRNA knockdown or pharmacological inhibition of RhoA signaling attenuated gammaC-induced barrier dysfunction. Imaging analyses demonstrated binding of gammaC to endothelial cells; the interaction was inhibited during blockage of the alphavbeta3 integrin. Furthermore, in vivo experiments showed that the microvascular leak response to gammaC was attenuated in integrin beta3(-/-) animals. Fibrinogen-gamma C terminus directly interacts with the microvascular endothelium causing fluid and protein leak. The endothelial response to gammaC involves an integrin receptor-mediated RhoA-dependent signaling pathway that leads to paracellular hyperpermeability.</description><identifier>ISSN: 1079-5642</identifier><identifier>EISSN: 1524-4636</identifier><identifier>DOI: 10.1161/ATVBAHA.108.180950</identifier><identifier>PMID: 19122172</identifier><language>eng</language><publisher>United States</publisher><subject>Albumins - metabolism ; Amides - pharmacology ; Animals ; Capillary Permeability - drug effects ; Dose-Response Relationship, Drug ; Electric Impedance ; Endothelium, Vascular - drug effects ; Endothelium, Vascular - metabolism ; Endothelium, Vascular - physiopathology ; Fibrinogen - metabolism ; Humans ; Integrin alphaVbeta3 - genetics ; Integrin alphaVbeta3 - metabolism ; Integrin beta3 - genetics ; Integrin beta3 - metabolism ; Mice ; Mice, Inbred C57BL ; Mice, Knockout ; Microcirculation - drug effects ; Microscopy, Video ; Myosin Light Chains - metabolism ; Peptide Fragments - metabolism ; Phosphorylation ; Protein Binding ; Protein Kinase Inhibitors - pharmacology ; Pyridines - pharmacology ; Rats ; Rats, Sprague-Dawley ; Recombinant Proteins - metabolism ; rhoA GTP-Binding Protein - antagonists &amp; inhibitors ; rhoA GTP-Binding Protein - genetics ; rhoA GTP-Binding Protein - metabolism ; RNA Interference ; RNA, Small Interfering - metabolism ; Splanchnic Circulation ; Stress Fibers - metabolism ; Time Factors</subject><ispartof>Arteriosclerosis, thrombosis, and vascular biology, 2009-03, Vol.29 (3), p.394-400</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c400t-dad43a7644cbc2150aef5d1b80815085928aa1d85744595394f52163b2fb3c9c3</citedby><cites>FETCH-LOGICAL-c400t-dad43a7644cbc2150aef5d1b80815085928aa1d85744595394f52163b2fb3c9c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,777,781,882,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19122172$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Guo, Mingzhang</creatorcontrib><creatorcontrib>Daines, Dayle</creatorcontrib><creatorcontrib>Tang, Jing</creatorcontrib><creatorcontrib>Shen, Qiang</creatorcontrib><creatorcontrib>Perrin, Rachel M</creatorcontrib><creatorcontrib>Takada, Yoshikazu</creatorcontrib><creatorcontrib>Yuan, Sarah Y</creatorcontrib><creatorcontrib>Wu, Mack H</creatorcontrib><title>Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism</title><title>Arteriosclerosis, thrombosis, and vascular biology</title><addtitle>Arterioscler Thromb Vasc Biol</addtitle><description>The purposes of this study were to characterize the direct effect of the C-terminal fragment of fibrinogen gamma chain (gammaC) on microvascular endothelial permeability and to examine its molecular mechanism of action. Intravital microscopy was performed to measure albumin extravasation in intact mesenteric microvasculature, followed by quantification of hydraulic conductivity in single perfused microvessels. Transendothelial electric resistance was measured in microvascular endothelial cells in combination with immunoblotting and immunocytochemistry. The results show that gammaC induced time- and concentration-dependent increases in protein transvascular flux and water permeability and decreases in endothelial barrier function, coupled with Rho GTPase activation, myosin light chain phosphorylation, and stress fiber formation. Depletion of RhoA via siRNA knockdown or pharmacological inhibition of RhoA signaling attenuated gammaC-induced barrier dysfunction. Imaging analyses demonstrated binding of gammaC to endothelial cells; the interaction was inhibited during blockage of the alphavbeta3 integrin. Furthermore, in vivo experiments showed that the microvascular leak response to gammaC was attenuated in integrin beta3(-/-) animals. Fibrinogen-gamma C terminus directly interacts with the microvascular endothelium causing fluid and protein leak. The endothelial response to gammaC involves an integrin receptor-mediated RhoA-dependent signaling pathway that leads to paracellular hyperpermeability.</description><subject>Albumins - metabolism</subject><subject>Amides - pharmacology</subject><subject>Animals</subject><subject>Capillary Permeability - drug effects</subject><subject>Dose-Response Relationship, Drug</subject><subject>Electric Impedance</subject><subject>Endothelium, Vascular - drug effects</subject><subject>Endothelium, Vascular - metabolism</subject><subject>Endothelium, Vascular - physiopathology</subject><subject>Fibrinogen - metabolism</subject><subject>Humans</subject><subject>Integrin alphaVbeta3 - genetics</subject><subject>Integrin alphaVbeta3 - metabolism</subject><subject>Integrin beta3 - genetics</subject><subject>Integrin beta3 - metabolism</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Mice, Knockout</subject><subject>Microcirculation - drug effects</subject><subject>Microscopy, Video</subject><subject>Myosin Light Chains - metabolism</subject><subject>Peptide Fragments - metabolism</subject><subject>Phosphorylation</subject><subject>Protein Binding</subject><subject>Protein Kinase Inhibitors - pharmacology</subject><subject>Pyridines - pharmacology</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>Recombinant Proteins - metabolism</subject><subject>rhoA GTP-Binding Protein - antagonists &amp; inhibitors</subject><subject>rhoA GTP-Binding Protein - genetics</subject><subject>rhoA GTP-Binding Protein - metabolism</subject><subject>RNA Interference</subject><subject>RNA, Small Interfering - metabolism</subject><subject>Splanchnic Circulation</subject><subject>Stress Fibers - metabolism</subject><subject>Time Factors</subject><issn>1079-5642</issn><issn>1524-4636</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpVkdtq3DAQhkVpaQ7tC-Si6AW00dGWbwrukkMhUChpb81Ykr1qLXmRvAt5kTxv1OySJlczw-j__hE_QheMrhir2GV7__tbe9uuGNUrpmmj6Dt0yhSXRFaiel96WjdEVZKfoLOc_1BKJef0IzphDeOc1fwUPV77Pvk4jy6SEUIAvCaLS8FHmPCQYAwuLhn7aHfGYRftvGzc5Muyh5S8S9g-5GEXzeLniCFaHLxJ8x6y2U2Q8OTgL957KITFjcWJBGc9LM4-P_65mVti3baAiw8Ozmwg-hw-oQ8DTNl9PtZz9Ov66n59S-5-3Hxft3fESEoXYsFKAXUlpekNZ4qCG5Rlvaa6DFo1XAMwq1UtpWqUaOSgOKtEz4demMaIc_T1wN3u-nKYKUckmLpt8gHSQzeD795uot9047zveC1qoasC4AdA-XTOyQ0vWka7fyl1x5TKrLtDSkX05bXrf8kxFvEEHH2S9w</recordid><startdate>20090301</startdate><enddate>20090301</enddate><creator>Guo, Mingzhang</creator><creator>Daines, Dayle</creator><creator>Tang, Jing</creator><creator>Shen, Qiang</creator><creator>Perrin, Rachel M</creator><creator>Takada, Yoshikazu</creator><creator>Yuan, Sarah Y</creator><creator>Wu, Mack H</creator><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>20090301</creationdate><title>Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism</title><author>Guo, Mingzhang ; Daines, Dayle ; Tang, Jing ; Shen, Qiang ; Perrin, Rachel M ; Takada, Yoshikazu ; Yuan, Sarah Y ; Wu, Mack H</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c400t-dad43a7644cbc2150aef5d1b80815085928aa1d85744595394f52163b2fb3c9c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Albumins - metabolism</topic><topic>Amides - pharmacology</topic><topic>Animals</topic><topic>Capillary Permeability - drug effects</topic><topic>Dose-Response Relationship, Drug</topic><topic>Electric Impedance</topic><topic>Endothelium, Vascular - drug effects</topic><topic>Endothelium, Vascular - metabolism</topic><topic>Endothelium, Vascular - physiopathology</topic><topic>Fibrinogen - metabolism</topic><topic>Humans</topic><topic>Integrin alphaVbeta3 - genetics</topic><topic>Integrin alphaVbeta3 - metabolism</topic><topic>Integrin beta3 - genetics</topic><topic>Integrin beta3 - metabolism</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Mice, Knockout</topic><topic>Microcirculation - drug effects</topic><topic>Microscopy, Video</topic><topic>Myosin Light Chains - metabolism</topic><topic>Peptide Fragments - metabolism</topic><topic>Phosphorylation</topic><topic>Protein Binding</topic><topic>Protein Kinase Inhibitors - pharmacology</topic><topic>Pyridines - pharmacology</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>Recombinant Proteins - metabolism</topic><topic>rhoA GTP-Binding Protein - antagonists &amp; inhibitors</topic><topic>rhoA GTP-Binding Protein - genetics</topic><topic>rhoA GTP-Binding Protein - metabolism</topic><topic>RNA Interference</topic><topic>RNA, Small Interfering - metabolism</topic><topic>Splanchnic Circulation</topic><topic>Stress Fibers - metabolism</topic><topic>Time Factors</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Guo, Mingzhang</creatorcontrib><creatorcontrib>Daines, Dayle</creatorcontrib><creatorcontrib>Tang, Jing</creatorcontrib><creatorcontrib>Shen, Qiang</creatorcontrib><creatorcontrib>Perrin, Rachel M</creatorcontrib><creatorcontrib>Takada, Yoshikazu</creatorcontrib><creatorcontrib>Yuan, Sarah Y</creatorcontrib><creatorcontrib>Wu, Mack H</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Guo, Mingzhang</au><au>Daines, Dayle</au><au>Tang, Jing</au><au>Shen, Qiang</au><au>Perrin, Rachel M</au><au>Takada, Yoshikazu</au><au>Yuan, Sarah Y</au><au>Wu, Mack H</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism</atitle><jtitle>Arteriosclerosis, thrombosis, and vascular biology</jtitle><addtitle>Arterioscler Thromb Vasc Biol</addtitle><date>2009-03-01</date><risdate>2009</risdate><volume>29</volume><issue>3</issue><spage>394</spage><epage>400</epage><pages>394-400</pages><issn>1079-5642</issn><eissn>1524-4636</eissn><abstract>The purposes of this study were to characterize the direct effect of the C-terminal fragment of fibrinogen gamma chain (gammaC) on microvascular endothelial permeability and to examine its molecular mechanism of action. Intravital microscopy was performed to measure albumin extravasation in intact mesenteric microvasculature, followed by quantification of hydraulic conductivity in single perfused microvessels. Transendothelial electric resistance was measured in microvascular endothelial cells in combination with immunoblotting and immunocytochemistry. The results show that gammaC induced time- and concentration-dependent increases in protein transvascular flux and water permeability and decreases in endothelial barrier function, coupled with Rho GTPase activation, myosin light chain phosphorylation, and stress fiber formation. Depletion of RhoA via siRNA knockdown or pharmacological inhibition of RhoA signaling attenuated gammaC-induced barrier dysfunction. Imaging analyses demonstrated binding of gammaC to endothelial cells; the interaction was inhibited during blockage of the alphavbeta3 integrin. Furthermore, in vivo experiments showed that the microvascular leak response to gammaC was attenuated in integrin beta3(-/-) animals. Fibrinogen-gamma C terminus directly interacts with the microvascular endothelium causing fluid and protein leak. The endothelial response to gammaC involves an integrin receptor-mediated RhoA-dependent signaling pathway that leads to paracellular hyperpermeability.</abstract><cop>United States</cop><pmid>19122172</pmid><doi>10.1161/ATVBAHA.108.180950</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1079-5642
ispartof Arteriosclerosis, thrombosis, and vascular biology, 2009-03, Vol.29 (3), p.394-400
issn 1079-5642
1524-4636
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2737386
source MEDLINE; Journals@Ovid Complete; Alma/SFX Local Collection
subjects Albumins - metabolism
Amides - pharmacology
Animals
Capillary Permeability - drug effects
Dose-Response Relationship, Drug
Electric Impedance
Endothelium, Vascular - drug effects
Endothelium, Vascular - metabolism
Endothelium, Vascular - physiopathology
Fibrinogen - metabolism
Humans
Integrin alphaVbeta3 - genetics
Integrin alphaVbeta3 - metabolism
Integrin beta3 - genetics
Integrin beta3 - metabolism
Mice
Mice, Inbred C57BL
Mice, Knockout
Microcirculation - drug effects
Microscopy, Video
Myosin Light Chains - metabolism
Peptide Fragments - metabolism
Phosphorylation
Protein Binding
Protein Kinase Inhibitors - pharmacology
Pyridines - pharmacology
Rats
Rats, Sprague-Dawley
Recombinant Proteins - metabolism
rhoA GTP-Binding Protein - antagonists & inhibitors
rhoA GTP-Binding Protein - genetics
rhoA GTP-Binding Protein - metabolism
RNA Interference
RNA, Small Interfering - metabolism
Splanchnic Circulation
Stress Fibers - metabolism
Time Factors
title Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T04%3A52%3A17IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Fibrinogen-gamma%20C-terminal%20fragments%20induce%20endothelial%20barrier%20dysfunction%20and%20microvascular%20leak%20via%20integrin-mediated%20and%20RhoA-dependent%20mechanism&rft.jtitle=Arteriosclerosis,%20thrombosis,%20and%20vascular%20biology&rft.au=Guo,%20Mingzhang&rft.date=2009-03-01&rft.volume=29&rft.issue=3&rft.spage=394&rft.epage=400&rft.pages=394-400&rft.issn=1079-5642&rft.eissn=1524-4636&rft_id=info:doi/10.1161/ATVBAHA.108.180950&rft_dat=%3Cpubmed_cross%3E19122172%3C/pubmed_cross%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19122172&rfr_iscdi=true