Compensatory Evolution in RNA Secondary Structures Increases Substitution Rate Variation among Sites
There is growing evidence that interactions between biological molecules (e.g., RNA-RNA, protein-protein, RNA-protein) place limits on the rate and trajectory of molecular evolution. Here, by extending Kimura's model of compensatory evolution at interacting sites, we show that the ratio of tran...
Gespeichert in:
Veröffentlicht in: | Molecular biology and evolution 2008-08, Vol.25 (8), p.1778-1787 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1787 |
---|---|
container_issue | 8 |
container_start_page | 1778 |
container_title | Molecular biology and evolution |
container_volume | 25 |
creator | Knies, Jennifer L. Dang, Kristen K. Vision, Todd J. Hoffman, Noah G. Swanstrom, Ronald Burch, Christina L. |
description | There is growing evidence that interactions between biological molecules (e.g., RNA-RNA, protein-protein, RNA-protein) place limits on the rate and trajectory of molecular evolution. Here, by extending Kimura's model of compensatory evolution at interacting sites, we show that the ratio of transition to transversion substitutions (κ) at interacting sites should be equal to the square of the ratio at independent sites. Because transition mutations generally occur at a higher rate than transversions, the model predicts that κ should be higher at interacting sites than at independent sites. We tested this prediction in 10 RNA secondary structures by comparing phylogenetically derived estimates of κ in paired sites within stems (κp) and unpaired sites within loops (κu). Eight of the 10 structures showed an excellent match to the quantitative predictions of the model, and 9 of the 10 structures matched the qualitative prediction κp > κu. Only the Rev response element from the human immunovirus (HIV) genome showed the reverse pattern, with κp < κu. Although a variety of evolutionary forces could produce quantitative deviations from the model predictions, the reversal in magnitude of κp and κu could be achieved only by violating the model assumption that the underlying transition (or transversion) mutation rates were identical in paired and unpaired regions of the molecule. We explore the ability of the APOBEC3 enzymes, host defense mechanisms against retroviruses, which induce transition mutations preferentially in single-stranded regions of the HIV genome, to explain this exception to the rule. Taken as a whole, our findings suggest that κ may have utility as a simple diagnostic to evaluate proposed secondary structures. |
doi_str_mv | 10.1093/molbev/msn130 |
format | Article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2734131</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/molbev/msn130</oup_id><sourcerecordid>1512452811</sourcerecordid><originalsourceid>FETCH-LOGICAL-c542t-e6ca72093df04ef760ce28c088816b55d435a326e6b041debb37befb19c8fb153</originalsourceid><addsrcrecordid>eNqFkUtP3DAUha2qqEyhS7ZV1EXVTcCvxJlNJTSiLRICiaHdWrZzA0aJPfVjpP57DBm10A0b-1r387k-PggdEXxM8JKdTH7UsD2ZoiMMv0EL0jBRE0GWb9ECi1JzzLp99D7Ge4wJ5237Du2TrmENJmyB-pWfNuCiSj78qc62fszJeldZV11fnlZrMN71qrTWKWSTcoBYnTsTQMVSrbOOyab5yrVKUP1Swaqno5q8u63WNkE8RHuDGiN82O0H6Oe3s5vVj_ri6vv56vSiNg2nqYbWKEGLqX7AHAbRYgO0M7jrOtLqpuk5axSjLbQac9KD1kxoGDRZmq6sDTtAX2fdTdYT9AZcCmqUm2CnYkF6ZeXLjrN38tZvJRWME0aKwOedQPC_M8QkJxsNjKNy4HOU7bJAgtFXQYopI5w-gp_-A-99Dq78gqSMdmWq4AWqZ8gEH2OA4e-TCZaPKcs5ZTmnXPiPz33-o3exFuDLDPi8eUXrAcAYtWs</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>232841374</pqid></control><display><type>article</type><title>Compensatory Evolution in RNA Secondary Structures Increases Substitution Rate Variation among Sites</title><source>Oxford Journals Open Access Collection</source><creator>Knies, Jennifer L. ; Dang, Kristen K. ; Vision, Todd J. ; Hoffman, Noah G. ; Swanstrom, Ronald ; Burch, Christina L.</creator><creatorcontrib>Knies, Jennifer L. ; Dang, Kristen K. ; Vision, Todd J. ; Hoffman, Noah G. ; Swanstrom, Ronald ; Burch, Christina L.</creatorcontrib><description>There is growing evidence that interactions between biological molecules (e.g., RNA-RNA, protein-protein, RNA-protein) place limits on the rate and trajectory of molecular evolution. Here, by extending Kimura's model of compensatory evolution at interacting sites, we show that the ratio of transition to transversion substitutions (κ) at interacting sites should be equal to the square of the ratio at independent sites. Because transition mutations generally occur at a higher rate than transversions, the model predicts that κ should be higher at interacting sites than at independent sites. We tested this prediction in 10 RNA secondary structures by comparing phylogenetically derived estimates of κ in paired sites within stems (κp) and unpaired sites within loops (κu). Eight of the 10 structures showed an excellent match to the quantitative predictions of the model, and 9 of the 10 structures matched the qualitative prediction κp > κu. Only the Rev response element from the human immunovirus (HIV) genome showed the reverse pattern, with κp < κu. Although a variety of evolutionary forces could produce quantitative deviations from the model predictions, the reversal in magnitude of κp and κu could be achieved only by violating the model assumption that the underlying transition (or transversion) mutation rates were identical in paired and unpaired regions of the molecule. We explore the ability of the APOBEC3 enzymes, host defense mechanisms against retroviruses, which induce transition mutations preferentially in single-stranded regions of the HIV genome, to explain this exception to the rule. Taken as a whole, our findings suggest that κ may have utility as a simple diagnostic to evaluate proposed secondary structures.</description><identifier>ISSN: 0737-4038</identifier><identifier>EISSN: 1537-1719</identifier><identifier>DOI: 10.1093/molbev/msn130</identifier><identifier>PMID: 18535013</identifier><language>eng</language><publisher>United States: Oxford University Press</publisher><subject>APOBEC Deaminases ; Bayes Theorem ; Computational Biology ; Cytidine Deaminase ; Cytosine Deaminase - genetics ; Evolution, Molecular ; Evolutionary biology ; Genes, env - genetics ; Human immunodeficiency virus ; Mathematics ; Models, Genetic ; Molecular biology ; Mutation ; Mutation - genetics ; Nucleic Acid Conformation ; Phylogeny ; Proteins ; Retrovirus ; Ribonucleic acid ; RNA ; RNA - genetics ; Sequence Alignment</subject><ispartof>Molecular biology and evolution, 2008-08, Vol.25 (8), p.1778-1787</ispartof><rights>The Author 2008. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org 2008</rights><rights>The Author 2008. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution. All rights reserved. For permissions, please e-mail: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c542t-e6ca72093df04ef760ce28c088816b55d435a326e6b041debb37befb19c8fb153</citedby><cites>FETCH-LOGICAL-c542t-e6ca72093df04ef760ce28c088816b55d435a326e6b041debb37befb19c8fb153</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2734131/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2734131/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/molbev/msn130$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18535013$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Knies, Jennifer L.</creatorcontrib><creatorcontrib>Dang, Kristen K.</creatorcontrib><creatorcontrib>Vision, Todd J.</creatorcontrib><creatorcontrib>Hoffman, Noah G.</creatorcontrib><creatorcontrib>Swanstrom, Ronald</creatorcontrib><creatorcontrib>Burch, Christina L.</creatorcontrib><title>Compensatory Evolution in RNA Secondary Structures Increases Substitution Rate Variation among Sites</title><title>Molecular biology and evolution</title><addtitle>Mol Biol Evol</addtitle><description>There is growing evidence that interactions between biological molecules (e.g., RNA-RNA, protein-protein, RNA-protein) place limits on the rate and trajectory of molecular evolution. Here, by extending Kimura's model of compensatory evolution at interacting sites, we show that the ratio of transition to transversion substitutions (κ) at interacting sites should be equal to the square of the ratio at independent sites. Because transition mutations generally occur at a higher rate than transversions, the model predicts that κ should be higher at interacting sites than at independent sites. We tested this prediction in 10 RNA secondary structures by comparing phylogenetically derived estimates of κ in paired sites within stems (κp) and unpaired sites within loops (κu). Eight of the 10 structures showed an excellent match to the quantitative predictions of the model, and 9 of the 10 structures matched the qualitative prediction κp > κu. Only the Rev response element from the human immunovirus (HIV) genome showed the reverse pattern, with κp < κu. Although a variety of evolutionary forces could produce quantitative deviations from the model predictions, the reversal in magnitude of κp and κu could be achieved only by violating the model assumption that the underlying transition (or transversion) mutation rates were identical in paired and unpaired regions of the molecule. We explore the ability of the APOBEC3 enzymes, host defense mechanisms against retroviruses, which induce transition mutations preferentially in single-stranded regions of the HIV genome, to explain this exception to the rule. Taken as a whole, our findings suggest that κ may have utility as a simple diagnostic to evaluate proposed secondary structures.</description><subject>APOBEC Deaminases</subject><subject>Bayes Theorem</subject><subject>Computational Biology</subject><subject>Cytidine Deaminase</subject><subject>Cytosine Deaminase - genetics</subject><subject>Evolution, Molecular</subject><subject>Evolutionary biology</subject><subject>Genes, env - genetics</subject><subject>Human immunodeficiency virus</subject><subject>Mathematics</subject><subject>Models, Genetic</subject><subject>Molecular biology</subject><subject>Mutation</subject><subject>Mutation - genetics</subject><subject>Nucleic Acid Conformation</subject><subject>Phylogeny</subject><subject>Proteins</subject><subject>Retrovirus</subject><subject>Ribonucleic acid</subject><subject>RNA</subject><subject>RNA - genetics</subject><subject>Sequence Alignment</subject><issn>0737-4038</issn><issn>1537-1719</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtP3DAUha2qqEyhS7ZV1EXVTcCvxJlNJTSiLRICiaHdWrZzA0aJPfVjpP57DBm10A0b-1r387k-PggdEXxM8JKdTH7UsD2ZoiMMv0EL0jBRE0GWb9ECi1JzzLp99D7Ge4wJ5237Du2TrmENJmyB-pWfNuCiSj78qc62fszJeldZV11fnlZrMN71qrTWKWSTcoBYnTsTQMVSrbOOyab5yrVKUP1Swaqno5q8u63WNkE8RHuDGiN82O0H6Oe3s5vVj_ri6vv56vSiNg2nqYbWKEGLqX7AHAbRYgO0M7jrOtLqpuk5axSjLbQac9KD1kxoGDRZmq6sDTtAX2fdTdYT9AZcCmqUm2CnYkF6ZeXLjrN38tZvJRWME0aKwOedQPC_M8QkJxsNjKNy4HOU7bJAgtFXQYopI5w-gp_-A-99Dq78gqSMdmWq4AWqZ8gEH2OA4e-TCZaPKcs5ZTmnXPiPz33-o3exFuDLDPi8eUXrAcAYtWs</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Knies, Jennifer L.</creator><creator>Dang, Kristen K.</creator><creator>Vision, Todd J.</creator><creator>Hoffman, Noah G.</creator><creator>Swanstrom, Ronald</creator><creator>Burch, Christina L.</creator><general>Oxford University Press</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080801</creationdate><title>Compensatory Evolution in RNA Secondary Structures Increases Substitution Rate Variation among Sites</title><author>Knies, Jennifer L. ; Dang, Kristen K. ; Vision, Todd J. ; Hoffman, Noah G. ; Swanstrom, Ronald ; Burch, Christina L.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c542t-e6ca72093df04ef760ce28c088816b55d435a326e6b041debb37befb19c8fb153</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>APOBEC Deaminases</topic><topic>Bayes Theorem</topic><topic>Computational Biology</topic><topic>Cytidine Deaminase</topic><topic>Cytosine Deaminase - genetics</topic><topic>Evolution, Molecular</topic><topic>Evolutionary biology</topic><topic>Genes, env - genetics</topic><topic>Human immunodeficiency virus</topic><topic>Mathematics</topic><topic>Models, Genetic</topic><topic>Molecular biology</topic><topic>Mutation</topic><topic>Mutation - genetics</topic><topic>Nucleic Acid Conformation</topic><topic>Phylogeny</topic><topic>Proteins</topic><topic>Retrovirus</topic><topic>Ribonucleic acid</topic><topic>RNA</topic><topic>RNA - genetics</topic><topic>Sequence Alignment</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Knies, Jennifer L.</creatorcontrib><creatorcontrib>Dang, Kristen K.</creatorcontrib><creatorcontrib>Vision, Todd J.</creatorcontrib><creatorcontrib>Hoffman, Noah G.</creatorcontrib><creatorcontrib>Swanstrom, Ronald</creatorcontrib><creatorcontrib>Burch, Christina L.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Molecular biology and evolution</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Knies, Jennifer L.</au><au>Dang, Kristen K.</au><au>Vision, Todd J.</au><au>Hoffman, Noah G.</au><au>Swanstrom, Ronald</au><au>Burch, Christina L.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Compensatory Evolution in RNA Secondary Structures Increases Substitution Rate Variation among Sites</atitle><jtitle>Molecular biology and evolution</jtitle><addtitle>Mol Biol Evol</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>25</volume><issue>8</issue><spage>1778</spage><epage>1787</epage><pages>1778-1787</pages><issn>0737-4038</issn><eissn>1537-1719</eissn><abstract>There is growing evidence that interactions between biological molecules (e.g., RNA-RNA, protein-protein, RNA-protein) place limits on the rate and trajectory of molecular evolution. Here, by extending Kimura's model of compensatory evolution at interacting sites, we show that the ratio of transition to transversion substitutions (κ) at interacting sites should be equal to the square of the ratio at independent sites. Because transition mutations generally occur at a higher rate than transversions, the model predicts that κ should be higher at interacting sites than at independent sites. We tested this prediction in 10 RNA secondary structures by comparing phylogenetically derived estimates of κ in paired sites within stems (κp) and unpaired sites within loops (κu). Eight of the 10 structures showed an excellent match to the quantitative predictions of the model, and 9 of the 10 structures matched the qualitative prediction κp > κu. Only the Rev response element from the human immunovirus (HIV) genome showed the reverse pattern, with κp < κu. Although a variety of evolutionary forces could produce quantitative deviations from the model predictions, the reversal in magnitude of κp and κu could be achieved only by violating the model assumption that the underlying transition (or transversion) mutation rates were identical in paired and unpaired regions of the molecule. We explore the ability of the APOBEC3 enzymes, host defense mechanisms against retroviruses, which induce transition mutations preferentially in single-stranded regions of the HIV genome, to explain this exception to the rule. Taken as a whole, our findings suggest that κ may have utility as a simple diagnostic to evaluate proposed secondary structures.</abstract><cop>United States</cop><pub>Oxford University Press</pub><pmid>18535013</pmid><doi>10.1093/molbev/msn130</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0737-4038 |
ispartof | Molecular biology and evolution, 2008-08, Vol.25 (8), p.1778-1787 |
issn | 0737-4038 1537-1719 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2734131 |
source | Oxford Journals Open Access Collection |
subjects | APOBEC Deaminases Bayes Theorem Computational Biology Cytidine Deaminase Cytosine Deaminase - genetics Evolution, Molecular Evolutionary biology Genes, env - genetics Human immunodeficiency virus Mathematics Models, Genetic Molecular biology Mutation Mutation - genetics Nucleic Acid Conformation Phylogeny Proteins Retrovirus Ribonucleic acid RNA RNA - genetics Sequence Alignment |
title | Compensatory Evolution in RNA Secondary Structures Increases Substitution Rate Variation among Sites |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T23%3A39%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Compensatory%20Evolution%20in%20RNA%20Secondary%20Structures%20Increases%20Substitution%20Rate%20Variation%20among%20Sites&rft.jtitle=Molecular%20biology%20and%20evolution&rft.au=Knies,%20Jennifer%20L.&rft.date=2008-08-01&rft.volume=25&rft.issue=8&rft.spage=1778&rft.epage=1787&rft.pages=1778-1787&rft.issn=0737-4038&rft.eissn=1537-1719&rft_id=info:doi/10.1093/molbev/msn130&rft_dat=%3Cproquest_TOX%3E1512452811%3C/proquest_TOX%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=232841374&rft_id=info:pmid/18535013&rft_oup_id=10.1093/molbev/msn130&rfr_iscdi=true |