Barcoding bacterial cells: a SERS-based methodology for pathogen identification

A principal component analysis (PCA) based on the sign of the second derivative of the surface‐enhanced Raman scattering (SERS) spectrum obtained on in situ grown Au‐cluster‐covered SiO2 substrates results in improved reproducibility and enhanced specificity for bacterial diagnostics. The barcode‐ge...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Raman spectroscopy 2008-11, Vol.39 (11), p.1660-1672
Hauptverfasser: Patel, I. S., Premasiri, W. R., Moir, D. T., Ziegler, L. D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 1672
container_issue 11
container_start_page 1660
container_title Journal of Raman spectroscopy
container_volume 39
creator Patel, I. S.
Premasiri, W. R.
Moir, D. T.
Ziegler, L. D.
description A principal component analysis (PCA) based on the sign of the second derivative of the surface‐enhanced Raman scattering (SERS) spectrum obtained on in situ grown Au‐cluster‐covered SiO2 substrates results in improved reproducibility and enhanced specificity for bacterial diagnostics. The barcode‐generated clustering results are systematically compared with those obtained from the corresponding spectral intensities, first derivatives and second derivatives for the SERS spectra of closely related cereus group Bacillus strains. PCA plots and the corresponding hierarchical cluster analysis (HCA) dendrograms illustrate the improved bacterial identification resulting from the barcode spectral data reduction. Supervised discriminant function analysis (DFA) plots result in slightly improved group separation but show more susceptibility to false positive classifications than the corresponding PCA contours. In addition, this PCA treatment is used to highlight the enhanced bacterial species specificity observed for SERS as compared to normal bulk (non‐SERS) Raman spectra. The identification algorithm described here is critical for the development of SERS microscopy as a rapid, reagentless and portable diagnostic of bacterial pathogens. Copyright © 2008 John Wiley & Sons, Ltd.
doi_str_mv 10.1002/jrs.2064
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2732026</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35630517</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5774-fe610d13279a2c2c261dd49c77d8866d49aa0cb016f9249424810e73726a22493</originalsourceid><addsrcrecordid>eNp9kV1PFDEUhhujkRVI_AVmrsSbgdPvqRcmQhAlBBIWo3dNt-0sxdnp0s6q--_thgnIBaQX_Xry5JzzIvQWwz4GIAc3Ke8TEOwFmmBQsmac85doAlTKGlgjttCbnG8AQCmBX6MtrCRmRJAJujg0yUYX-nk1M3bwKZiusr7r8sfKVNPjy2k9M9m7auGH6-hiF-frqo2pWppyn_u-Cs73Q2iDNUOI_Q561Zou-91x30bfvxxfHX2tzy5Ovh19Pqstl5LVrRcYHKZEKkNsWQI7x5SV0jWNEOVoDNgZYNEqwhQjrMHgJZVEGFIe6Db6dOddrmYL72ypIZlOL1NYmLTW0QT9-KcP13oef2siKQEiimBvFKR4u_J50IuQN42b3sdV1pKXISoFTSHfP0tSLihwLAv44VkQN5RzxiRXD6hNMefk2_vKMehNpLpEqjeRFvTd_50-gGOGBajvgD-h8-snRfr0cjoKRz7kwf-95036pUWZMNc_zk804Vf08Jz-1A39B2GSuKI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1835544759</pqid></control><display><type>article</type><title>Barcoding bacterial cells: a SERS-based methodology for pathogen identification</title><source>Wiley Online Library Journals Frontfile Complete</source><creator>Patel, I. S. ; Premasiri, W. R. ; Moir, D. T. ; Ziegler, L. D.</creator><creatorcontrib>Patel, I. S. ; Premasiri, W. R. ; Moir, D. T. ; Ziegler, L. D.</creatorcontrib><description>A principal component analysis (PCA) based on the sign of the second derivative of the surface‐enhanced Raman scattering (SERS) spectrum obtained on in situ grown Au‐cluster‐covered SiO2 substrates results in improved reproducibility and enhanced specificity for bacterial diagnostics. The barcode‐generated clustering results are systematically compared with those obtained from the corresponding spectral intensities, first derivatives and second derivatives for the SERS spectra of closely related cereus group Bacillus strains. PCA plots and the corresponding hierarchical cluster analysis (HCA) dendrograms illustrate the improved bacterial identification resulting from the barcode spectral data reduction. Supervised discriminant function analysis (DFA) plots result in slightly improved group separation but show more susceptibility to false positive classifications than the corresponding PCA contours. In addition, this PCA treatment is used to highlight the enhanced bacterial species specificity observed for SERS as compared to normal bulk (non‐SERS) Raman spectra. The identification algorithm described here is critical for the development of SERS microscopy as a rapid, reagentless and portable diagnostic of bacterial pathogens. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><identifier>ISSN: 0377-0486</identifier><identifier>EISSN: 1097-4555</identifier><identifier>DOI: 10.1002/jrs.2064</identifier><identifier>PMID: 19714262</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Bacillus ; bacteria ; principal component analysis ; SERS</subject><ispartof>Journal of Raman spectroscopy, 2008-11, Vol.39 (11), p.1660-1672</ispartof><rights>Copyright © 2008 John Wiley &amp; Sons, Ltd.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5774-fe610d13279a2c2c261dd49c77d8866d49aa0cb016f9249424810e73726a22493</citedby><cites>FETCH-LOGICAL-c5774-fe610d13279a2c2c261dd49c77d8866d49aa0cb016f9249424810e73726a22493</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fjrs.2064$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fjrs.2064$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,777,781,882,1412,27905,27906,45555,45556</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19714262$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Patel, I. S.</creatorcontrib><creatorcontrib>Premasiri, W. R.</creatorcontrib><creatorcontrib>Moir, D. T.</creatorcontrib><creatorcontrib>Ziegler, L. D.</creatorcontrib><title>Barcoding bacterial cells: a SERS-based methodology for pathogen identification</title><title>Journal of Raman spectroscopy</title><addtitle>J. Raman Spectrosc</addtitle><description>A principal component analysis (PCA) based on the sign of the second derivative of the surface‐enhanced Raman scattering (SERS) spectrum obtained on in situ grown Au‐cluster‐covered SiO2 substrates results in improved reproducibility and enhanced specificity for bacterial diagnostics. The barcode‐generated clustering results are systematically compared with those obtained from the corresponding spectral intensities, first derivatives and second derivatives for the SERS spectra of closely related cereus group Bacillus strains. PCA plots and the corresponding hierarchical cluster analysis (HCA) dendrograms illustrate the improved bacterial identification resulting from the barcode spectral data reduction. Supervised discriminant function analysis (DFA) plots result in slightly improved group separation but show more susceptibility to false positive classifications than the corresponding PCA contours. In addition, this PCA treatment is used to highlight the enhanced bacterial species specificity observed for SERS as compared to normal bulk (non‐SERS) Raman spectra. The identification algorithm described here is critical for the development of SERS microscopy as a rapid, reagentless and portable diagnostic of bacterial pathogens. Copyright © 2008 John Wiley &amp; Sons, Ltd.</description><subject>Bacillus</subject><subject>bacteria</subject><subject>principal component analysis</subject><subject>SERS</subject><issn>0377-0486</issn><issn>1097-4555</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kV1PFDEUhhujkRVI_AVmrsSbgdPvqRcmQhAlBBIWo3dNt-0sxdnp0s6q--_thgnIBaQX_Xry5JzzIvQWwz4GIAc3Ke8TEOwFmmBQsmac85doAlTKGlgjttCbnG8AQCmBX6MtrCRmRJAJujg0yUYX-nk1M3bwKZiusr7r8sfKVNPjy2k9M9m7auGH6-hiF-frqo2pWppyn_u-Cs73Q2iDNUOI_Q561Zou-91x30bfvxxfHX2tzy5Ovh19Pqstl5LVrRcYHKZEKkNsWQI7x5SV0jWNEOVoDNgZYNEqwhQjrMHgJZVEGFIe6Db6dOddrmYL72ypIZlOL1NYmLTW0QT9-KcP13oef2siKQEiimBvFKR4u_J50IuQN42b3sdV1pKXISoFTSHfP0tSLihwLAv44VkQN5RzxiRXD6hNMefk2_vKMehNpLpEqjeRFvTd_50-gGOGBajvgD-h8-snRfr0cjoKRz7kwf-95036pUWZMNc_zk804Vf08Jz-1A39B2GSuKI</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Patel, I. S.</creator><creator>Premasiri, W. R.</creator><creator>Moir, D. T.</creator><creator>Ziegler, L. D.</creator><general>John Wiley &amp; Sons, Ltd</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7SR</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>JG9</scope><scope>L7M</scope><scope>7QL</scope><scope>7T7</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>5PM</scope></search><sort><creationdate>200811</creationdate><title>Barcoding bacterial cells: a SERS-based methodology for pathogen identification</title><author>Patel, I. S. ; Premasiri, W. R. ; Moir, D. T. ; Ziegler, L. D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5774-fe610d13279a2c2c261dd49c77d8866d49aa0cb016f9249424810e73726a22493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Bacillus</topic><topic>bacteria</topic><topic>principal component analysis</topic><topic>SERS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Patel, I. S.</creatorcontrib><creatorcontrib>Premasiri, W. R.</creatorcontrib><creatorcontrib>Moir, D. T.</creatorcontrib><creatorcontrib>Ziegler, L. D.</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of Raman spectroscopy</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Patel, I. S.</au><au>Premasiri, W. R.</au><au>Moir, D. T.</au><au>Ziegler, L. D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Barcoding bacterial cells: a SERS-based methodology for pathogen identification</atitle><jtitle>Journal of Raman spectroscopy</jtitle><addtitle>J. Raman Spectrosc</addtitle><date>2008-11</date><risdate>2008</risdate><volume>39</volume><issue>11</issue><spage>1660</spage><epage>1672</epage><pages>1660-1672</pages><issn>0377-0486</issn><eissn>1097-4555</eissn><abstract>A principal component analysis (PCA) based on the sign of the second derivative of the surface‐enhanced Raman scattering (SERS) spectrum obtained on in situ grown Au‐cluster‐covered SiO2 substrates results in improved reproducibility and enhanced specificity for bacterial diagnostics. The barcode‐generated clustering results are systematically compared with those obtained from the corresponding spectral intensities, first derivatives and second derivatives for the SERS spectra of closely related cereus group Bacillus strains. PCA plots and the corresponding hierarchical cluster analysis (HCA) dendrograms illustrate the improved bacterial identification resulting from the barcode spectral data reduction. Supervised discriminant function analysis (DFA) plots result in slightly improved group separation but show more susceptibility to false positive classifications than the corresponding PCA contours. In addition, this PCA treatment is used to highlight the enhanced bacterial species specificity observed for SERS as compared to normal bulk (non‐SERS) Raman spectra. The identification algorithm described here is critical for the development of SERS microscopy as a rapid, reagentless and portable diagnostic of bacterial pathogens. Copyright © 2008 John Wiley &amp; Sons, Ltd.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>19714262</pmid><doi>10.1002/jrs.2064</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0377-0486
ispartof Journal of Raman spectroscopy, 2008-11, Vol.39 (11), p.1660-1672
issn 0377-0486
1097-4555
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2732026
source Wiley Online Library Journals Frontfile Complete
subjects Bacillus
bacteria
principal component analysis
SERS
title Barcoding bacterial cells: a SERS-based methodology for pathogen identification
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T16%3A15%3A48IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Barcoding%20bacterial%20cells:%20a%20SERS-based%20methodology%20for%20pathogen%20identification&rft.jtitle=Journal%20of%20Raman%20spectroscopy&rft.au=Patel,%20I.%20S.&rft.date=2008-11&rft.volume=39&rft.issue=11&rft.spage=1660&rft.epage=1672&rft.pages=1660-1672&rft.issn=0377-0486&rft.eissn=1097-4555&rft_id=info:doi/10.1002/jrs.2064&rft_dat=%3Cproquest_pubme%3E35630517%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=1835544759&rft_id=info:pmid/19714262&rfr_iscdi=true