Rapid prototyping of 3D DNA-origami shapes with caDNAno
DNA nanotechnology exploits the programmable specificity afforded by base-pairing to produce self-assembling macromolecular objects of custom shape. For building megadalton-scale DNA nanostructures, a long 'scaffold' strand can be employed to template the assembly of hundreds of oligonucle...
Gespeichert in:
Veröffentlicht in: | Nucleic acids research 2009-08, Vol.37 (15), p.5001-5006 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 5006 |
---|---|
container_issue | 15 |
container_start_page | 5001 |
container_title | Nucleic acids research |
container_volume | 37 |
creator | Douglas, Shawn M Marblestone, Adam H Teerapittayanon, Surat Vazquez, Alejandro Church, George M Shih, William M |
description | DNA nanotechnology exploits the programmable specificity afforded by base-pairing to produce self-assembling macromolecular objects of custom shape. For building megadalton-scale DNA nanostructures, a long 'scaffold' strand can be employed to template the assembly of hundreds of oligonucleotide 'staple' strands into a planar antiparallel array of cross-linked helices. We recently adapted this 'scaffolded DNA origami' method to producing 3D shapes formed as pleated layers of double helices constrained to a honeycomb lattice. However, completing the required design steps can be cumbersome and time-consuming. Here we present caDNAno, an open-source software package with a graphical user interface that aids in the design of DNA sequences for folding 3D honeycomb-pleated shapes A series of rectangular-block motifs were designed, assembled, and analyzed to identify a well-behaved motif that could serve as a building block for future studies. The use of caDNAno significantly reduces the effort required to design 3D DNA-origami structures. The software is available at http://cadnano.org/, along with example designs and video tutorials demonstrating their construction. The source code is released under the MIT license. |
doi_str_mv | 10.1093/nar/gkp436 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2731887</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkp436</oup_id><sourcerecordid>20828632</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-1e3bdbc645c881e970df2f2ca71ca9f7e226a33282fdc6d19bd810c05d78585b3</originalsourceid><addsrcrecordid>eNp90ctO3DAUBmALFcGUsukDtFGldoGU4mPHl2yQEJRbESAKatWN5ThOxjATp3ZCy9vXVUb0sujKi_Pp1zn-EXoJ-D3gku52Ouy2931B-RqaAeUkL0pOnqEZppjlgAu5iZ7HeIcxFMCKDbQJJaMgqJghca17V2d98IMfHnvXtZlvMnqYHV7s5z64Vi9dFue6tzH77oZ5ZnSadP4FWm_0Itrt1buFbo8-3Byc5OeXx6cH--e5YYQPOVha1ZXhBTNSgi0FrhvSEKMFGF02whLCNaVEkqY2vIayqiVgg1ktJJOsoltob8rtx2ppa2O7IeiF6oNb6vCovHbq70nn5qr1D4oIClKKFPBuFRD8t9HGQS1dNHax0J31Y1QESyI5JQm--Qfe-TF06bhkMCuBQpnQzoRM8DEG2zxtAlj9KkOlMtRURsKv_tz9N139fgJvJ-DH_v9B-eRcHOyPJ6nDveIph6mTL1-V_Hh8dvOZX6ir5F9PvtFe6Ta4qG4_EQwUQ_JMCPoTpq2qMw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200591319</pqid></control><display><type>article</type><title>Rapid prototyping of 3D DNA-origami shapes with caDNAno</title><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>Access via Oxford University Press (Open Access Collection)</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Oxford Journals</source><creator>Douglas, Shawn M ; Marblestone, Adam H ; Teerapittayanon, Surat ; Vazquez, Alejandro ; Church, George M ; Shih, William M</creator><creatorcontrib>Douglas, Shawn M ; Marblestone, Adam H ; Teerapittayanon, Surat ; Vazquez, Alejandro ; Church, George M ; Shih, William M</creatorcontrib><description>DNA nanotechnology exploits the programmable specificity afforded by base-pairing to produce self-assembling macromolecular objects of custom shape. For building megadalton-scale DNA nanostructures, a long 'scaffold' strand can be employed to template the assembly of hundreds of oligonucleotide 'staple' strands into a planar antiparallel array of cross-linked helices. We recently adapted this 'scaffolded DNA origami' method to producing 3D shapes formed as pleated layers of double helices constrained to a honeycomb lattice. However, completing the required design steps can be cumbersome and time-consuming. Here we present caDNAno, an open-source software package with a graphical user interface that aids in the design of DNA sequences for folding 3D honeycomb-pleated shapes A series of rectangular-block motifs were designed, assembled, and analyzed to identify a well-behaved motif that could serve as a building block for future studies. The use of caDNAno significantly reduces the effort required to design 3D DNA-origami structures. The software is available at http://cadnano.org/, along with example designs and video tutorials demonstrating their construction. The source code is released under the MIT license.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkp436</identifier><identifier>PMID: 19531737</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Chemistry and Synthetic Biology ; DNA - chemistry ; DNA - ultrastructure ; Electrophoresis, Agar Gel ; Microscopy, Electron, Transmission ; Nanostructures - chemistry ; Nanostructures - ultrastructure ; Nucleic Acid Conformation ; Software</subject><ispartof>Nucleic acids research, 2009-08, Vol.37 (15), p.5001-5006</ispartof><rights>2009 The Author(s). 2009</rights><rights>2009 The Author(s).</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-1e3bdbc645c881e970df2f2ca71ca9f7e226a33282fdc6d19bd810c05d78585b3</citedby><cites>FETCH-LOGICAL-c526t-1e3bdbc645c881e970df2f2ca71ca9f7e226a33282fdc6d19bd810c05d78585b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2731887/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2731887/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,315,729,782,786,866,887,1586,1606,27931,27932,53798,53800</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19531737$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Douglas, Shawn M</creatorcontrib><creatorcontrib>Marblestone, Adam H</creatorcontrib><creatorcontrib>Teerapittayanon, Surat</creatorcontrib><creatorcontrib>Vazquez, Alejandro</creatorcontrib><creatorcontrib>Church, George M</creatorcontrib><creatorcontrib>Shih, William M</creatorcontrib><title>Rapid prototyping of 3D DNA-origami shapes with caDNAno</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>DNA nanotechnology exploits the programmable specificity afforded by base-pairing to produce self-assembling macromolecular objects of custom shape. For building megadalton-scale DNA nanostructures, a long 'scaffold' strand can be employed to template the assembly of hundreds of oligonucleotide 'staple' strands into a planar antiparallel array of cross-linked helices. We recently adapted this 'scaffolded DNA origami' method to producing 3D shapes formed as pleated layers of double helices constrained to a honeycomb lattice. However, completing the required design steps can be cumbersome and time-consuming. Here we present caDNAno, an open-source software package with a graphical user interface that aids in the design of DNA sequences for folding 3D honeycomb-pleated shapes A series of rectangular-block motifs were designed, assembled, and analyzed to identify a well-behaved motif that could serve as a building block for future studies. The use of caDNAno significantly reduces the effort required to design 3D DNA-origami structures. The software is available at http://cadnano.org/, along with example designs and video tutorials demonstrating their construction. The source code is released under the MIT license.</description><subject>Chemistry and Synthetic Biology</subject><subject>DNA - chemistry</subject><subject>DNA - ultrastructure</subject><subject>Electrophoresis, Agar Gel</subject><subject>Microscopy, Electron, Transmission</subject><subject>Nanostructures - chemistry</subject><subject>Nanostructures - ultrastructure</subject><subject>Nucleic Acid Conformation</subject><subject>Software</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNp90ctO3DAUBmALFcGUsukDtFGldoGU4mPHl2yQEJRbESAKatWN5ThOxjATp3ZCy9vXVUb0sujKi_Pp1zn-EXoJ-D3gku52Ouy2931B-RqaAeUkL0pOnqEZppjlgAu5iZ7HeIcxFMCKDbQJJaMgqJghca17V2d98IMfHnvXtZlvMnqYHV7s5z64Vi9dFue6tzH77oZ5ZnSadP4FWm_0Itrt1buFbo8-3Byc5OeXx6cH--e5YYQPOVha1ZXhBTNSgi0FrhvSEKMFGF02whLCNaVEkqY2vIayqiVgg1ktJJOsoltob8rtx2ppa2O7IeiF6oNb6vCovHbq70nn5qr1D4oIClKKFPBuFRD8t9HGQS1dNHax0J31Y1QESyI5JQm--Qfe-TF06bhkMCuBQpnQzoRM8DEG2zxtAlj9KkOlMtRURsKv_tz9N139fgJvJ-DH_v9B-eRcHOyPJ6nDveIph6mTL1-V_Hh8dvOZX6ir5F9PvtFe6Ta4qG4_EQwUQ_JMCPoTpq2qMw</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Douglas, Shawn M</creator><creator>Marblestone, Adam H</creator><creator>Teerapittayanon, Surat</creator><creator>Vazquez, Alejandro</creator><creator>Church, George M</creator><creator>Shih, William M</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>5PM</scope></search><sort><creationdate>20090801</creationdate><title>Rapid prototyping of 3D DNA-origami shapes with caDNAno</title><author>Douglas, Shawn M ; Marblestone, Adam H ; Teerapittayanon, Surat ; Vazquez, Alejandro ; Church, George M ; Shih, William M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-1e3bdbc645c881e970df2f2ca71ca9f7e226a33282fdc6d19bd810c05d78585b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Chemistry and Synthetic Biology</topic><topic>DNA - chemistry</topic><topic>DNA - ultrastructure</topic><topic>Electrophoresis, Agar Gel</topic><topic>Microscopy, Electron, Transmission</topic><topic>Nanostructures - chemistry</topic><topic>Nanostructures - ultrastructure</topic><topic>Nucleic Acid Conformation</topic><topic>Software</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Douglas, Shawn M</creatorcontrib><creatorcontrib>Marblestone, Adam H</creatorcontrib><creatorcontrib>Teerapittayanon, Surat</creatorcontrib><creatorcontrib>Vazquez, Alejandro</creatorcontrib><creatorcontrib>Church, George M</creatorcontrib><creatorcontrib>Shih, William M</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Douglas, Shawn M</au><au>Marblestone, Adam H</au><au>Teerapittayanon, Surat</au><au>Vazquez, Alejandro</au><au>Church, George M</au><au>Shih, William M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rapid prototyping of 3D DNA-origami shapes with caDNAno</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>37</volume><issue>15</issue><spage>5001</spage><epage>5006</epage><pages>5001-5006</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>DNA nanotechnology exploits the programmable specificity afforded by base-pairing to produce self-assembling macromolecular objects of custom shape. For building megadalton-scale DNA nanostructures, a long 'scaffold' strand can be employed to template the assembly of hundreds of oligonucleotide 'staple' strands into a planar antiparallel array of cross-linked helices. We recently adapted this 'scaffolded DNA origami' method to producing 3D shapes formed as pleated layers of double helices constrained to a honeycomb lattice. However, completing the required design steps can be cumbersome and time-consuming. Here we present caDNAno, an open-source software package with a graphical user interface that aids in the design of DNA sequences for folding 3D honeycomb-pleated shapes A series of rectangular-block motifs were designed, assembled, and analyzed to identify a well-behaved motif that could serve as a building block for future studies. The use of caDNAno significantly reduces the effort required to design 3D DNA-origami structures. The software is available at http://cadnano.org/, along with example designs and video tutorials demonstrating their construction. The source code is released under the MIT license.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>19531737</pmid><doi>10.1093/nar/gkp436</doi><tpages>6</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-1048 |
ispartof | Nucleic acids research, 2009-08, Vol.37 (15), p.5001-5006 |
issn | 0305-1048 1362-4962 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2731887 |
source | MEDLINE; DOAJ Directory of Open Access Journals; Access via Oxford University Press (Open Access Collection); PubMed Central; Free Full-Text Journals in Chemistry; Oxford Journals |
subjects | Chemistry and Synthetic Biology DNA - chemistry DNA - ultrastructure Electrophoresis, Agar Gel Microscopy, Electron, Transmission Nanostructures - chemistry Nanostructures - ultrastructure Nucleic Acid Conformation Software |
title | Rapid prototyping of 3D DNA-origami shapes with caDNAno |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-03T22%3A27%3A01IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rapid%20prototyping%20of%203D%20DNA-origami%20shapes%20with%20caDNAno&rft.jtitle=Nucleic%20acids%20research&rft.au=Douglas,%20Shawn%20M&rft.date=2009-08-01&rft.volume=37&rft.issue=15&rft.spage=5001&rft.epage=5006&rft.pages=5001-5006&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkp436&rft_dat=%3Cproquest_pubme%3E20828632%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200591319&rft_id=info:pmid/19531737&rft_oup_id=10.1093/nar/gkp436&rfr_iscdi=true |