Web application for studying the free energy of binding and protonation states of protein–ligand complexes based on HINT
A public web server performing computational titration at the active site in a protein–ligand complex has been implemented. This calculation is based on the Hydropathic interaction noncovalent force field. From 3D coordinate data for the protein, ligand and bridging waters (if available), the server...
Gespeichert in:
Veröffentlicht in: | Journal of computer-aided molecular design 2009-09, Vol.23 (9), p.621-632 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 632 |
---|---|
container_issue | 9 |
container_start_page | 621 |
container_title | Journal of computer-aided molecular design |
container_volume | 23 |
creator | Bayden, Alexander S. Fornabaio, Micaela Scarsdale, J. Neel Kellogg, Glen E. |
description | A public web server performing computational titration at the active site in a protein–ligand complex has been implemented. This calculation is based on the Hydropathic interaction noncovalent force field. From 3D coordinate data for the protein, ligand and bridging waters (if available), the server predicts the best combination of protonation states for each ionizable residue and/or ligand functional group as well as the Gibbs free energy of binding for the ionization-optimized protein–ligand complex. The 3D structure for the modified molecules is available as output. In addition, a graph depicting how this energy changes with acidity, i.e., as a function of added protons, can be obtained. This data may prove to be of use in preparing models for virtual screening and molecular docking. A few illustrative examples are presented. In β secretase (2va7) computational titration flipped the amide groups of Gln12 and Asn37 and protonated a ligand amine yielding an improvement of 6.37 kcal mol
−1
in the protein–ligand binding score. Protonation of Glu139 in mutant HIV-1 reverse transcriptase (2opq) allows a water bridge between the protein and inhibitor that increases the protein–ligand interaction score by 0.16 kcal mol
−1
. In human sialidase NEU2 complexed with an isobutyl ether mimetic inhibitor (2f11) computational titration suggested that protonating Glu218, deprotonating Arg237, flipping the amide bond on Tyr334, and optimizing the positions of several other polar protons would increase the protein–ligand interaction score by 0.71 kcal mol
−1
. |
doi_str_mv | 10.1007/s10822-009-9270-7 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2730983</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>67594796</sourcerecordid><originalsourceid>FETCH-LOGICAL-c498t-812780bfa990067370d8160d63e62562e267b722b2468224a39a81ea757c4e5a3</originalsourceid><addsrcrecordid>eNqFkc1u1DAUhS0EokPhAdggiwW7gH_ivw0SqiitVMGmCHaWk9ykrjJ2sDMVw6rvwBvyJDjKiAISYmXJ5zvH1_cg9JSSl5QQ9SpTohmrCDGVYYpU6h7aUKF4VRtB76MNMYxUUtSfj9CjnK9J8RhJHqIjaoSomRQb9O0TNNhN0-hbN_sYcB8TzvOu2_sw4PkKcJ8AMARIwx7HHjc-dIvkQoenFOcYVl-e3Qx5IZZb8OHH7ffRDwvWxu00wteiNi5Dhwt9dv7-8jF60Lsxw5PDeYw-nr69PDmrLj68Oz95c1G1tdFzpSlTmjS9M4YQqbginaaSdJKDZEIyYFI1irGG1bJso3bcOE3BKaHaGoTjx-j1mjvtmi10LYQ5udFOyW9d2tvovP1TCf7KDvHGMsWJ0bwEvDgEpPhlB3m2W59bGEcXIO6ylUqYumz2vyCXXGgllsTnf4HXcZdC2YJlVHJptBYFoivUpphzgv7XyJTYpX-79m9L_3bp36riefb7X-8ch8ILwFYgFykMkO5e_nfqTwI8vPc</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>216369885</pqid></control><display><type>article</type><title>Web application for studying the free energy of binding and protonation states of protein–ligand complexes based on HINT</title><source>MEDLINE</source><source>Springer Online Journals Complete</source><creator>Bayden, Alexander S. ; Fornabaio, Micaela ; Scarsdale, J. Neel ; Kellogg, Glen E.</creator><creatorcontrib>Bayden, Alexander S. ; Fornabaio, Micaela ; Scarsdale, J. Neel ; Kellogg, Glen E.</creatorcontrib><description>A public web server performing computational titration at the active site in a protein–ligand complex has been implemented. This calculation is based on the Hydropathic interaction noncovalent force field. From 3D coordinate data for the protein, ligand and bridging waters (if available), the server predicts the best combination of protonation states for each ionizable residue and/or ligand functional group as well as the Gibbs free energy of binding for the ionization-optimized protein–ligand complex. The 3D structure for the modified molecules is available as output. In addition, a graph depicting how this energy changes with acidity, i.e., as a function of added protons, can be obtained. This data may prove to be of use in preparing models for virtual screening and molecular docking. A few illustrative examples are presented. In β secretase (2va7) computational titration flipped the amide groups of Gln12 and Asn37 and protonated a ligand amine yielding an improvement of 6.37 kcal mol
−1
in the protein–ligand binding score. Protonation of Glu139 in mutant HIV-1 reverse transcriptase (2opq) allows a water bridge between the protein and inhibitor that increases the protein–ligand interaction score by 0.16 kcal mol
−1
. In human sialidase NEU2 complexed with an isobutyl ether mimetic inhibitor (2f11) computational titration suggested that protonating Glu218, deprotonating Arg237, flipping the amide bond on Tyr334, and optimizing the positions of several other polar protons would increase the protein–ligand interaction score by 0.71 kcal mol
−1
.</description><identifier>ISSN: 0920-654X</identifier><identifier>ISSN: 1573-4951</identifier><identifier>EISSN: 1573-4951</identifier><identifier>DOI: 10.1007/s10822-009-9270-7</identifier><identifier>PMID: 19554265</identifier><language>eng</language><publisher>Dordrecht: Springer Netherlands</publisher><subject>Acidity ; Algorithms ; Amino Acids - chemistry ; Amyloid Precursor Protein Secretases - chemistry ; Amyloid Precursor Protein Secretases - metabolism ; Animal Anatomy ; Binding sites ; Chemistry ; Chemistry and Materials Science ; Computational Biology - methods ; Computer Applications in Chemistry ; Computer Graphics ; Crystallography, X-Ray ; Histology ; HIV Reverse Transcriptase - chemistry ; HIV Reverse Transcriptase - metabolism ; Humans ; Hydrogen-Ion Concentration ; Hydrophobic and Hydrophilic Interactions ; Internet ; Ionization ; Ligands ; Models, Chemical ; Molecular Structure ; Morphology ; Neuraminidase - antagonists & inhibitors ; Neuraminidase - chemistry ; Neuraminidase - metabolism ; Physical Chemistry ; Protein Binding ; Protons ; Servers ; Solvents - chemistry ; Thermodynamics ; Titrimetry ; World Wide Web</subject><ispartof>Journal of computer-aided molecular design, 2009-09, Vol.23 (9), p.621-632</ispartof><rights>Springer Science+Business Media B.V. 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c498t-812780bfa990067370d8160d63e62562e267b722b2468224a39a81ea757c4e5a3</citedby><cites>FETCH-LOGICAL-c498t-812780bfa990067370d8160d63e62562e267b722b2468224a39a81ea757c4e5a3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://link.springer.com/content/pdf/10.1007/s10822-009-9270-7$$EPDF$$P50$$Gspringer$$H</linktopdf><linktohtml>$$Uhttps://link.springer.com/10.1007/s10822-009-9270-7$$EHTML$$P50$$Gspringer$$H</linktohtml><link.rule.ids>230,314,780,784,885,27915,27916,41479,42548,51310</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19554265$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bayden, Alexander S.</creatorcontrib><creatorcontrib>Fornabaio, Micaela</creatorcontrib><creatorcontrib>Scarsdale, J. Neel</creatorcontrib><creatorcontrib>Kellogg, Glen E.</creatorcontrib><title>Web application for studying the free energy of binding and protonation states of protein–ligand complexes based on HINT</title><title>Journal of computer-aided molecular design</title><addtitle>J Comput Aided Mol Des</addtitle><addtitle>J Comput Aided Mol Des</addtitle><description>A public web server performing computational titration at the active site in a protein–ligand complex has been implemented. This calculation is based on the Hydropathic interaction noncovalent force field. From 3D coordinate data for the protein, ligand and bridging waters (if available), the server predicts the best combination of protonation states for each ionizable residue and/or ligand functional group as well as the Gibbs free energy of binding for the ionization-optimized protein–ligand complex. The 3D structure for the modified molecules is available as output. In addition, a graph depicting how this energy changes with acidity, i.e., as a function of added protons, can be obtained. This data may prove to be of use in preparing models for virtual screening and molecular docking. A few illustrative examples are presented. In β secretase (2va7) computational titration flipped the amide groups of Gln12 and Asn37 and protonated a ligand amine yielding an improvement of 6.37 kcal mol
−1
in the protein–ligand binding score. Protonation of Glu139 in mutant HIV-1 reverse transcriptase (2opq) allows a water bridge between the protein and inhibitor that increases the protein–ligand interaction score by 0.16 kcal mol
−1
. In human sialidase NEU2 complexed with an isobutyl ether mimetic inhibitor (2f11) computational titration suggested that protonating Glu218, deprotonating Arg237, flipping the amide bond on Tyr334, and optimizing the positions of several other polar protons would increase the protein–ligand interaction score by 0.71 kcal mol
−1
.</description><subject>Acidity</subject><subject>Algorithms</subject><subject>Amino Acids - chemistry</subject><subject>Amyloid Precursor Protein Secretases - chemistry</subject><subject>Amyloid Precursor Protein Secretases - metabolism</subject><subject>Animal Anatomy</subject><subject>Binding sites</subject><subject>Chemistry</subject><subject>Chemistry and Materials Science</subject><subject>Computational Biology - methods</subject><subject>Computer Applications in Chemistry</subject><subject>Computer Graphics</subject><subject>Crystallography, X-Ray</subject><subject>Histology</subject><subject>HIV Reverse Transcriptase - chemistry</subject><subject>HIV Reverse Transcriptase - metabolism</subject><subject>Humans</subject><subject>Hydrogen-Ion Concentration</subject><subject>Hydrophobic and Hydrophilic Interactions</subject><subject>Internet</subject><subject>Ionization</subject><subject>Ligands</subject><subject>Models, Chemical</subject><subject>Molecular Structure</subject><subject>Morphology</subject><subject>Neuraminidase - antagonists & inhibitors</subject><subject>Neuraminidase - chemistry</subject><subject>Neuraminidase - metabolism</subject><subject>Physical Chemistry</subject><subject>Protein Binding</subject><subject>Protons</subject><subject>Servers</subject><subject>Solvents - chemistry</subject><subject>Thermodynamics</subject><subject>Titrimetry</subject><subject>World Wide Web</subject><issn>0920-654X</issn><issn>1573-4951</issn><issn>1573-4951</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqFkc1u1DAUhS0EokPhAdggiwW7gH_ivw0SqiitVMGmCHaWk9ykrjJ2sDMVw6rvwBvyJDjKiAISYmXJ5zvH1_cg9JSSl5QQ9SpTohmrCDGVYYpU6h7aUKF4VRtB76MNMYxUUtSfj9CjnK9J8RhJHqIjaoSomRQb9O0TNNhN0-hbN_sYcB8TzvOu2_sw4PkKcJ8AMARIwx7HHjc-dIvkQoenFOcYVl-e3Qx5IZZb8OHH7ffRDwvWxu00wteiNi5Dhwt9dv7-8jF60Lsxw5PDeYw-nr69PDmrLj68Oz95c1G1tdFzpSlTmjS9M4YQqbginaaSdJKDZEIyYFI1irGG1bJso3bcOE3BKaHaGoTjx-j1mjvtmi10LYQ5udFOyW9d2tvovP1TCf7KDvHGMsWJ0bwEvDgEpPhlB3m2W59bGEcXIO6ylUqYumz2vyCXXGgllsTnf4HXcZdC2YJlVHJptBYFoivUpphzgv7XyJTYpX-79m9L_3bp36riefb7X-8ch8ILwFYgFykMkO5e_nfqTwI8vPc</recordid><startdate>20090901</startdate><enddate>20090901</enddate><creator>Bayden, Alexander S.</creator><creator>Fornabaio, Micaela</creator><creator>Scarsdale, J. Neel</creator><creator>Kellogg, Glen E.</creator><general>Springer Netherlands</general><general>Springer Nature B.V</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB.</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>P5Z</scope><scope>P62</scope><scope>PCBAR</scope><scope>PDBOC</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090901</creationdate><title>Web application for studying the free energy of binding and protonation states of protein–ligand complexes based on HINT</title><author>Bayden, Alexander S. ; Fornabaio, Micaela ; Scarsdale, J. Neel ; Kellogg, Glen E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c498t-812780bfa990067370d8160d63e62562e267b722b2468224a39a81ea757c4e5a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Acidity</topic><topic>Algorithms</topic><topic>Amino Acids - chemistry</topic><topic>Amyloid Precursor Protein Secretases - chemistry</topic><topic>Amyloid Precursor Protein Secretases - metabolism</topic><topic>Animal Anatomy</topic><topic>Binding sites</topic><topic>Chemistry</topic><topic>Chemistry and Materials Science</topic><topic>Computational Biology - methods</topic><topic>Computer Applications in Chemistry</topic><topic>Computer Graphics</topic><topic>Crystallography, X-Ray</topic><topic>Histology</topic><topic>HIV Reverse Transcriptase - chemistry</topic><topic>HIV Reverse Transcriptase - metabolism</topic><topic>Humans</topic><topic>Hydrogen-Ion Concentration</topic><topic>Hydrophobic and Hydrophilic Interactions</topic><topic>Internet</topic><topic>Ionization</topic><topic>Ligands</topic><topic>Models, Chemical</topic><topic>Molecular Structure</topic><topic>Morphology</topic><topic>Neuraminidase - antagonists & inhibitors</topic><topic>Neuraminidase - chemistry</topic><topic>Neuraminidase - metabolism</topic><topic>Physical Chemistry</topic><topic>Protein Binding</topic><topic>Protons</topic><topic>Servers</topic><topic>Solvents - chemistry</topic><topic>Thermodynamics</topic><topic>Titrimetry</topic><topic>World Wide Web</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bayden, Alexander S.</creatorcontrib><creatorcontrib>Fornabaio, Micaela</creatorcontrib><creatorcontrib>Scarsdale, J. Neel</creatorcontrib><creatorcontrib>Kellogg, Glen E.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Materials Science Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>Materials Science Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Journal of computer-aided molecular design</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bayden, Alexander S.</au><au>Fornabaio, Micaela</au><au>Scarsdale, J. Neel</au><au>Kellogg, Glen E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Web application for studying the free energy of binding and protonation states of protein–ligand complexes based on HINT</atitle><jtitle>Journal of computer-aided molecular design</jtitle><stitle>J Comput Aided Mol Des</stitle><addtitle>J Comput Aided Mol Des</addtitle><date>2009-09-01</date><risdate>2009</risdate><volume>23</volume><issue>9</issue><spage>621</spage><epage>632</epage><pages>621-632</pages><issn>0920-654X</issn><issn>1573-4951</issn><eissn>1573-4951</eissn><abstract>A public web server performing computational titration at the active site in a protein–ligand complex has been implemented. This calculation is based on the Hydropathic interaction noncovalent force field. From 3D coordinate data for the protein, ligand and bridging waters (if available), the server predicts the best combination of protonation states for each ionizable residue and/or ligand functional group as well as the Gibbs free energy of binding for the ionization-optimized protein–ligand complex. The 3D structure for the modified molecules is available as output. In addition, a graph depicting how this energy changes with acidity, i.e., as a function of added protons, can be obtained. This data may prove to be of use in preparing models for virtual screening and molecular docking. A few illustrative examples are presented. In β secretase (2va7) computational titration flipped the amide groups of Gln12 and Asn37 and protonated a ligand amine yielding an improvement of 6.37 kcal mol
−1
in the protein–ligand binding score. Protonation of Glu139 in mutant HIV-1 reverse transcriptase (2opq) allows a water bridge between the protein and inhibitor that increases the protein–ligand interaction score by 0.16 kcal mol
−1
. In human sialidase NEU2 complexed with an isobutyl ether mimetic inhibitor (2f11) computational titration suggested that protonating Glu218, deprotonating Arg237, flipping the amide bond on Tyr334, and optimizing the positions of several other polar protons would increase the protein–ligand interaction score by 0.71 kcal mol
−1
.</abstract><cop>Dordrecht</cop><pub>Springer Netherlands</pub><pmid>19554265</pmid><doi>10.1007/s10822-009-9270-7</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0920-654X |
ispartof | Journal of computer-aided molecular design, 2009-09, Vol.23 (9), p.621-632 |
issn | 0920-654X 1573-4951 1573-4951 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2730983 |
source | MEDLINE; Springer Online Journals Complete |
subjects | Acidity Algorithms Amino Acids - chemistry Amyloid Precursor Protein Secretases - chemistry Amyloid Precursor Protein Secretases - metabolism Animal Anatomy Binding sites Chemistry Chemistry and Materials Science Computational Biology - methods Computer Applications in Chemistry Computer Graphics Crystallography, X-Ray Histology HIV Reverse Transcriptase - chemistry HIV Reverse Transcriptase - metabolism Humans Hydrogen-Ion Concentration Hydrophobic and Hydrophilic Interactions Internet Ionization Ligands Models, Chemical Molecular Structure Morphology Neuraminidase - antagonists & inhibitors Neuraminidase - chemistry Neuraminidase - metabolism Physical Chemistry Protein Binding Protons Servers Solvents - chemistry Thermodynamics Titrimetry World Wide Web |
title | Web application for studying the free energy of binding and protonation states of protein–ligand complexes based on HINT |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-15T02%3A16%3A00IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Web%20application%20for%20studying%20the%20free%20energy%20of%20binding%20and%20protonation%20states%20of%20protein%E2%80%93ligand%20complexes%20based%20on%20HINT&rft.jtitle=Journal%20of%20computer-aided%20molecular%20design&rft.au=Bayden,%20Alexander%20S.&rft.date=2009-09-01&rft.volume=23&rft.issue=9&rft.spage=621&rft.epage=632&rft.pages=621-632&rft.issn=0920-654X&rft.eissn=1573-4951&rft_id=info:doi/10.1007/s10822-009-9270-7&rft_dat=%3Cproquest_pubme%3E67594796%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=216369885&rft_id=info:pmid/19554265&rfr_iscdi=true |