Semaphorin function in neural plasticity and disease

The semaphorins, originally discovered as evolutionarily conserved steering molecules for developing axons, also influence neuronal structure and function in the early postnatal and juvenile nervous systems through several refinement processes. Semaphorins control synaptogenesis, axon pruning, and t...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Current opinion in neurobiology 2009-06, Vol.19 (3), p.263-274
Hauptverfasser: Pasterkamp, R Jeroen, Giger, Roman J
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 274
container_issue 3
container_start_page 263
container_title Current opinion in neurobiology
container_volume 19
creator Pasterkamp, R Jeroen
Giger, Roman J
description The semaphorins, originally discovered as evolutionarily conserved steering molecules for developing axons, also influence neuronal structure and function in the early postnatal and juvenile nervous systems through several refinement processes. Semaphorins control synaptogenesis, axon pruning, and the density and maturation of dendritic spines. In addition, semaphorins and their downstream signaling components regulate synaptic physiology and neuronal excitability in the mature hippocampus, and these proteins are also implicated in a number of developmental, psychiatric, and neurodegenerative disorders. Significant inroads have been made in defining the mechanisms by which semaphorins regulate dynamic changes in the neuronal cytoskeleton at the molecular and cellular levels during embryonic nervous system development. However, comparatively little is known about how semaphorins influence neuronal structure and synaptic plasticity during adult nervous system homeostasis or following injury and disease. A detailed understanding of how semaphorins function beyond initial phases of neural network assembly is revealing novel insights into key aspects of nervous system physiology and pathology.
doi_str_mv 10.1016/j.conb.2009.06.001
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2730419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0959438809000579</els_id><sourcerecordid>67602075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-afb48f114297ebf9f6f9e5e8c8e54bc38ca2ca953680b5b12fb3481c2a0fa0303</originalsourceid><addsrcrecordid>eNqFks1u1DAUhS0EokPhBVigrNglXNuxY0uoEqpoQarEorC2HOeaesjYg51Umrcn0Yz4W7QrW_I5R-f6u4S8ptBQoPLdtnEp9g0D0A3IBoA-IRuqOl5LpdhTsgEtdN1ypc7Ii1K2ACC54s_JGdWipW3HN6S9xZ3d36UcYuXn6KaQYrXcI87ZjtV-tGUKLkyHysahGkJBW_AleebtWPDV6Twn364-fr38VN98uf58-eGmdhLEVFvft8pT2jLdYe-1l16jQOUUirZ3XDnLnNWCSwW96CnzPW8VdcyCt8CBn5OLY-5-7nc4OIzTUsrsc9jZfDDJBvPvSwx35nu6N6zj0FK9BLw9BeT0c8YymV0oDsfRRkxzMbKTwKATjwoZKC5ArZXYUehyKiWj_92GglmpmK1ZqZiVigFpFiqL6c3fc_yxnDAsgvdHAS6_eR8wm-ICRodDyOgmM6TwcP7Ff3Y3hhicHX_gAcs2zTkunAw1hRkwt-terGsBelkJ0Wn-C4sss_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20835080</pqid></control><display><type>article</type><title>Semaphorin function in neural plasticity and disease</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pasterkamp, R Jeroen ; Giger, Roman J</creator><creatorcontrib>Pasterkamp, R Jeroen ; Giger, Roman J</creatorcontrib><description>The semaphorins, originally discovered as evolutionarily conserved steering molecules for developing axons, also influence neuronal structure and function in the early postnatal and juvenile nervous systems through several refinement processes. Semaphorins control synaptogenesis, axon pruning, and the density and maturation of dendritic spines. In addition, semaphorins and their downstream signaling components regulate synaptic physiology and neuronal excitability in the mature hippocampus, and these proteins are also implicated in a number of developmental, psychiatric, and neurodegenerative disorders. Significant inroads have been made in defining the mechanisms by which semaphorins regulate dynamic changes in the neuronal cytoskeleton at the molecular and cellular levels during embryonic nervous system development. However, comparatively little is known about how semaphorins influence neuronal structure and synaptic plasticity during adult nervous system homeostasis or following injury and disease. A detailed understanding of how semaphorins function beyond initial phases of neural network assembly is revealing novel insights into key aspects of nervous system physiology and pathology.</description><identifier>ISSN: 0959-4388</identifier><identifier>EISSN: 1873-6882</identifier><identifier>DOI: 10.1016/j.conb.2009.06.001</identifier><identifier>PMID: 19541473</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Humans ; Models, Neurological ; Nerve Regeneration - physiology ; Nervous System Diseases - physiopathology ; Neurology ; Neuronal Plasticity - physiology ; Neurons - physiology ; Psychiatry ; Semaphorins - metabolism ; Synapses - physiology</subject><ispartof>Current opinion in neurobiology, 2009-06, Vol.19 (3), p.263-274</ispartof><rights>Elsevier Ltd</rights><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-afb48f114297ebf9f6f9e5e8c8e54bc38ca2ca953680b5b12fb3481c2a0fa0303</citedby><cites>FETCH-LOGICAL-c605t-afb48f114297ebf9f6f9e5e8c8e54bc38ca2ca953680b5b12fb3481c2a0fa0303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0959438809000579$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19541473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pasterkamp, R Jeroen</creatorcontrib><creatorcontrib>Giger, Roman J</creatorcontrib><title>Semaphorin function in neural plasticity and disease</title><title>Current opinion in neurobiology</title><addtitle>Curr Opin Neurobiol</addtitle><description>The semaphorins, originally discovered as evolutionarily conserved steering molecules for developing axons, also influence neuronal structure and function in the early postnatal and juvenile nervous systems through several refinement processes. Semaphorins control synaptogenesis, axon pruning, and the density and maturation of dendritic spines. In addition, semaphorins and their downstream signaling components regulate synaptic physiology and neuronal excitability in the mature hippocampus, and these proteins are also implicated in a number of developmental, psychiatric, and neurodegenerative disorders. Significant inroads have been made in defining the mechanisms by which semaphorins regulate dynamic changes in the neuronal cytoskeleton at the molecular and cellular levels during embryonic nervous system development. However, comparatively little is known about how semaphorins influence neuronal structure and synaptic plasticity during adult nervous system homeostasis or following injury and disease. A detailed understanding of how semaphorins function beyond initial phases of neural network assembly is revealing novel insights into key aspects of nervous system physiology and pathology.</description><subject>Animals</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Nerve Regeneration - physiology</subject><subject>Nervous System Diseases - physiopathology</subject><subject>Neurology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Psychiatry</subject><subject>Semaphorins - metabolism</subject><subject>Synapses - physiology</subject><issn>0959-4388</issn><issn>1873-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1u1DAUhS0EokPhBVigrNglXNuxY0uoEqpoQarEorC2HOeaesjYg51Umrcn0Yz4W7QrW_I5R-f6u4S8ptBQoPLdtnEp9g0D0A3IBoA-IRuqOl5LpdhTsgEtdN1ypc7Ii1K2ACC54s_JGdWipW3HN6S9xZ3d36UcYuXn6KaQYrXcI87ZjtV-tGUKLkyHysahGkJBW_AleebtWPDV6Twn364-fr38VN98uf58-eGmdhLEVFvft8pT2jLdYe-1l16jQOUUirZ3XDnLnNWCSwW96CnzPW8VdcyCt8CBn5OLY-5-7nc4OIzTUsrsc9jZfDDJBvPvSwx35nu6N6zj0FK9BLw9BeT0c8YymV0oDsfRRkxzMbKTwKATjwoZKC5ArZXYUehyKiWj_92GglmpmK1ZqZiVigFpFiqL6c3fc_yxnDAsgvdHAS6_eR8wm-ICRodDyOgmM6TwcP7Ff3Y3hhicHX_gAcs2zTkunAw1hRkwt-terGsBelkJ0Wn-C4sss_w</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Pasterkamp, R Jeroen</creator><creator>Giger, Roman J</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090601</creationdate><title>Semaphorin function in neural plasticity and disease</title><author>Pasterkamp, R Jeroen ; Giger, Roman J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-afb48f114297ebf9f6f9e5e8c8e54bc38ca2ca953680b5b12fb3481c2a0fa0303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Nerve Regeneration - physiology</topic><topic>Nervous System Diseases - physiopathology</topic><topic>Neurology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Psychiatry</topic><topic>Semaphorins - metabolism</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasterkamp, R Jeroen</creatorcontrib><creatorcontrib>Giger, Roman J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current opinion in neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pasterkamp, R Jeroen</au><au>Giger, Roman J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semaphorin function in neural plasticity and disease</atitle><jtitle>Current opinion in neurobiology</jtitle><addtitle>Curr Opin Neurobiol</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>19</volume><issue>3</issue><spage>263</spage><epage>274</epage><pages>263-274</pages><issn>0959-4388</issn><eissn>1873-6882</eissn><abstract>The semaphorins, originally discovered as evolutionarily conserved steering molecules for developing axons, also influence neuronal structure and function in the early postnatal and juvenile nervous systems through several refinement processes. Semaphorins control synaptogenesis, axon pruning, and the density and maturation of dendritic spines. In addition, semaphorins and their downstream signaling components regulate synaptic physiology and neuronal excitability in the mature hippocampus, and these proteins are also implicated in a number of developmental, psychiatric, and neurodegenerative disorders. Significant inroads have been made in defining the mechanisms by which semaphorins regulate dynamic changes in the neuronal cytoskeleton at the molecular and cellular levels during embryonic nervous system development. However, comparatively little is known about how semaphorins influence neuronal structure and synaptic plasticity during adult nervous system homeostasis or following injury and disease. A detailed understanding of how semaphorins function beyond initial phases of neural network assembly is revealing novel insights into key aspects of nervous system physiology and pathology.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19541473</pmid><doi>10.1016/j.conb.2009.06.001</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0959-4388
ispartof Current opinion in neurobiology, 2009-06, Vol.19 (3), p.263-274
issn 0959-4388
1873-6882
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2730419
source MEDLINE; Elsevier ScienceDirect Journals
subjects Animals
Humans
Models, Neurological
Nerve Regeneration - physiology
Nervous System Diseases - physiopathology
Neurology
Neuronal Plasticity - physiology
Neurons - physiology
Psychiatry
Semaphorins - metabolism
Synapses - physiology
title Semaphorin function in neural plasticity and disease
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semaphorin%20function%20in%20neural%20plasticity%20and%20disease&rft.jtitle=Current%20opinion%20in%20neurobiology&rft.au=Pasterkamp,%20R%20Jeroen&rft.date=2009-06-01&rft.volume=19&rft.issue=3&rft.spage=263&rft.epage=274&rft.pages=263-274&rft.issn=0959-4388&rft.eissn=1873-6882&rft_id=info:doi/10.1016/j.conb.2009.06.001&rft_dat=%3Cproquest_pubme%3E67602075%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20835080&rft_id=info:pmid/19541473&rft_els_id=1_s2_0_S0959438809000579&rfr_iscdi=true