Semaphorin function in neural plasticity and disease
The semaphorins, originally discovered as evolutionarily conserved steering molecules for developing axons, also influence neuronal structure and function in the early postnatal and juvenile nervous systems through several refinement processes. Semaphorins control synaptogenesis, axon pruning, and t...
Gespeichert in:
Veröffentlicht in: | Current opinion in neurobiology 2009-06, Vol.19 (3), p.263-274 |
---|---|
Hauptverfasser: | , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 274 |
---|---|
container_issue | 3 |
container_start_page | 263 |
container_title | Current opinion in neurobiology |
container_volume | 19 |
creator | Pasterkamp, R Jeroen Giger, Roman J |
description | The semaphorins, originally discovered as evolutionarily conserved steering molecules for developing axons, also influence neuronal structure and function in the early postnatal and juvenile nervous systems through several refinement processes. Semaphorins control synaptogenesis, axon pruning, and the density and maturation of dendritic spines. In addition, semaphorins and their downstream signaling components regulate synaptic physiology and neuronal excitability in the mature hippocampus, and these proteins are also implicated in a number of developmental, psychiatric, and neurodegenerative disorders. Significant inroads have been made in defining the mechanisms by which semaphorins regulate dynamic changes in the neuronal cytoskeleton at the molecular and cellular levels during embryonic nervous system development. However, comparatively little is known about how semaphorins influence neuronal structure and synaptic plasticity during adult nervous system homeostasis or following injury and disease. A detailed understanding of how semaphorins function beyond initial phases of neural network assembly is revealing novel insights into key aspects of nervous system physiology and pathology. |
doi_str_mv | 10.1016/j.conb.2009.06.001 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2730419</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>1_s2_0_S0959438809000579</els_id><sourcerecordid>67602075</sourcerecordid><originalsourceid>FETCH-LOGICAL-c605t-afb48f114297ebf9f6f9e5e8c8e54bc38ca2ca953680b5b12fb3481c2a0fa0303</originalsourceid><addsrcrecordid>eNqFks1u1DAUhS0EokPhBVigrNglXNuxY0uoEqpoQarEorC2HOeaesjYg51Umrcn0Yz4W7QrW_I5R-f6u4S8ptBQoPLdtnEp9g0D0A3IBoA-IRuqOl5LpdhTsgEtdN1ypc7Ii1K2ACC54s_JGdWipW3HN6S9xZ3d36UcYuXn6KaQYrXcI87ZjtV-tGUKLkyHysahGkJBW_AleebtWPDV6Twn364-fr38VN98uf58-eGmdhLEVFvft8pT2jLdYe-1l16jQOUUirZ3XDnLnNWCSwW96CnzPW8VdcyCt8CBn5OLY-5-7nc4OIzTUsrsc9jZfDDJBvPvSwx35nu6N6zj0FK9BLw9BeT0c8YymV0oDsfRRkxzMbKTwKATjwoZKC5ArZXYUehyKiWj_92GglmpmK1ZqZiVigFpFiqL6c3fc_yxnDAsgvdHAS6_eR8wm-ICRodDyOgmM6TwcP7Ff3Y3hhicHX_gAcs2zTkunAw1hRkwt-terGsBelkJ0Wn-C4sss_w</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20835080</pqid></control><display><type>article</type><title>Semaphorin function in neural plasticity and disease</title><source>MEDLINE</source><source>Elsevier ScienceDirect Journals</source><creator>Pasterkamp, R Jeroen ; Giger, Roman J</creator><creatorcontrib>Pasterkamp, R Jeroen ; Giger, Roman J</creatorcontrib><description>The semaphorins, originally discovered as evolutionarily conserved steering molecules for developing axons, also influence neuronal structure and function in the early postnatal and juvenile nervous systems through several refinement processes. Semaphorins control synaptogenesis, axon pruning, and the density and maturation of dendritic spines. In addition, semaphorins and their downstream signaling components regulate synaptic physiology and neuronal excitability in the mature hippocampus, and these proteins are also implicated in a number of developmental, psychiatric, and neurodegenerative disorders. Significant inroads have been made in defining the mechanisms by which semaphorins regulate dynamic changes in the neuronal cytoskeleton at the molecular and cellular levels during embryonic nervous system development. However, comparatively little is known about how semaphorins influence neuronal structure and synaptic plasticity during adult nervous system homeostasis or following injury and disease. A detailed understanding of how semaphorins function beyond initial phases of neural network assembly is revealing novel insights into key aspects of nervous system physiology and pathology.</description><identifier>ISSN: 0959-4388</identifier><identifier>EISSN: 1873-6882</identifier><identifier>DOI: 10.1016/j.conb.2009.06.001</identifier><identifier>PMID: 19541473</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Animals ; Humans ; Models, Neurological ; Nerve Regeneration - physiology ; Nervous System Diseases - physiopathology ; Neurology ; Neuronal Plasticity - physiology ; Neurons - physiology ; Psychiatry ; Semaphorins - metabolism ; Synapses - physiology</subject><ispartof>Current opinion in neurobiology, 2009-06, Vol.19 (3), p.263-274</ispartof><rights>Elsevier Ltd</rights><rights>2009 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c605t-afb48f114297ebf9f6f9e5e8c8e54bc38ca2ca953680b5b12fb3481c2a0fa0303</citedby><cites>FETCH-LOGICAL-c605t-afb48f114297ebf9f6f9e5e8c8e54bc38ca2ca953680b5b12fb3481c2a0fa0303</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S0959438809000579$$EHTML$$P50$$Gelsevier$$H</linktohtml><link.rule.ids>230,314,776,780,881,3537,27901,27902,65306</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19541473$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Pasterkamp, R Jeroen</creatorcontrib><creatorcontrib>Giger, Roman J</creatorcontrib><title>Semaphorin function in neural plasticity and disease</title><title>Current opinion in neurobiology</title><addtitle>Curr Opin Neurobiol</addtitle><description>The semaphorins, originally discovered as evolutionarily conserved steering molecules for developing axons, also influence neuronal structure and function in the early postnatal and juvenile nervous systems through several refinement processes. Semaphorins control synaptogenesis, axon pruning, and the density and maturation of dendritic spines. In addition, semaphorins and their downstream signaling components regulate synaptic physiology and neuronal excitability in the mature hippocampus, and these proteins are also implicated in a number of developmental, psychiatric, and neurodegenerative disorders. Significant inroads have been made in defining the mechanisms by which semaphorins regulate dynamic changes in the neuronal cytoskeleton at the molecular and cellular levels during embryonic nervous system development. However, comparatively little is known about how semaphorins influence neuronal structure and synaptic plasticity during adult nervous system homeostasis or following injury and disease. A detailed understanding of how semaphorins function beyond initial phases of neural network assembly is revealing novel insights into key aspects of nervous system physiology and pathology.</description><subject>Animals</subject><subject>Humans</subject><subject>Models, Neurological</subject><subject>Nerve Regeneration - physiology</subject><subject>Nervous System Diseases - physiopathology</subject><subject>Neurology</subject><subject>Neuronal Plasticity - physiology</subject><subject>Neurons - physiology</subject><subject>Psychiatry</subject><subject>Semaphorins - metabolism</subject><subject>Synapses - physiology</subject><issn>0959-4388</issn><issn>1873-6882</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFks1u1DAUhS0EokPhBVigrNglXNuxY0uoEqpoQarEorC2HOeaesjYg51Umrcn0Yz4W7QrW_I5R-f6u4S8ptBQoPLdtnEp9g0D0A3IBoA-IRuqOl5LpdhTsgEtdN1ypc7Ii1K2ACC54s_JGdWipW3HN6S9xZ3d36UcYuXn6KaQYrXcI87ZjtV-tGUKLkyHysahGkJBW_AleebtWPDV6Twn364-fr38VN98uf58-eGmdhLEVFvft8pT2jLdYe-1l16jQOUUirZ3XDnLnNWCSwW96CnzPW8VdcyCt8CBn5OLY-5-7nc4OIzTUsrsc9jZfDDJBvPvSwx35nu6N6zj0FK9BLw9BeT0c8YymV0oDsfRRkxzMbKTwKATjwoZKC5ArZXYUehyKiWj_92GglmpmK1ZqZiVigFpFiqL6c3fc_yxnDAsgvdHAS6_eR8wm-ICRodDyOgmM6TwcP7Ff3Y3hhicHX_gAcs2zTkunAw1hRkwt-terGsBelkJ0Wn-C4sss_w</recordid><startdate>20090601</startdate><enddate>20090601</enddate><creator>Pasterkamp, R Jeroen</creator><creator>Giger, Roman J</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7TK</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090601</creationdate><title>Semaphorin function in neural plasticity and disease</title><author>Pasterkamp, R Jeroen ; Giger, Roman J</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c605t-afb48f114297ebf9f6f9e5e8c8e54bc38ca2ca953680b5b12fb3481c2a0fa0303</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Humans</topic><topic>Models, Neurological</topic><topic>Nerve Regeneration - physiology</topic><topic>Nervous System Diseases - physiopathology</topic><topic>Neurology</topic><topic>Neuronal Plasticity - physiology</topic><topic>Neurons - physiology</topic><topic>Psychiatry</topic><topic>Semaphorins - metabolism</topic><topic>Synapses - physiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Pasterkamp, R Jeroen</creatorcontrib><creatorcontrib>Giger, Roman J</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Neurosciences Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Current opinion in neurobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Pasterkamp, R Jeroen</au><au>Giger, Roman J</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Semaphorin function in neural plasticity and disease</atitle><jtitle>Current opinion in neurobiology</jtitle><addtitle>Curr Opin Neurobiol</addtitle><date>2009-06-01</date><risdate>2009</risdate><volume>19</volume><issue>3</issue><spage>263</spage><epage>274</epage><pages>263-274</pages><issn>0959-4388</issn><eissn>1873-6882</eissn><abstract>The semaphorins, originally discovered as evolutionarily conserved steering molecules for developing axons, also influence neuronal structure and function in the early postnatal and juvenile nervous systems through several refinement processes. Semaphorins control synaptogenesis, axon pruning, and the density and maturation of dendritic spines. In addition, semaphorins and their downstream signaling components regulate synaptic physiology and neuronal excitability in the mature hippocampus, and these proteins are also implicated in a number of developmental, psychiatric, and neurodegenerative disorders. Significant inroads have been made in defining the mechanisms by which semaphorins regulate dynamic changes in the neuronal cytoskeleton at the molecular and cellular levels during embryonic nervous system development. However, comparatively little is known about how semaphorins influence neuronal structure and synaptic plasticity during adult nervous system homeostasis or following injury and disease. A detailed understanding of how semaphorins function beyond initial phases of neural network assembly is revealing novel insights into key aspects of nervous system physiology and pathology.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>19541473</pmid><doi>10.1016/j.conb.2009.06.001</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0959-4388 |
ispartof | Current opinion in neurobiology, 2009-06, Vol.19 (3), p.263-274 |
issn | 0959-4388 1873-6882 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2730419 |
source | MEDLINE; Elsevier ScienceDirect Journals |
subjects | Animals Humans Models, Neurological Nerve Regeneration - physiology Nervous System Diseases - physiopathology Neurology Neuronal Plasticity - physiology Neurons - physiology Psychiatry Semaphorins - metabolism Synapses - physiology |
title | Semaphorin function in neural plasticity and disease |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-10T23%3A16%3A32IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Semaphorin%20function%20in%20neural%20plasticity%20and%20disease&rft.jtitle=Current%20opinion%20in%20neurobiology&rft.au=Pasterkamp,%20R%20Jeroen&rft.date=2009-06-01&rft.volume=19&rft.issue=3&rft.spage=263&rft.epage=274&rft.pages=263-274&rft.issn=0959-4388&rft.eissn=1873-6882&rft_id=info:doi/10.1016/j.conb.2009.06.001&rft_dat=%3Cproquest_pubme%3E67602075%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20835080&rft_id=info:pmid/19541473&rft_els_id=1_s2_0_S0959438809000579&rfr_iscdi=true |