Synthesis and Biological Activity of a Novel Series of 6-Substituted Thieno[2,3-d]pyrimidine Antifolate Inhibitors of Purine Biosynthesis with Selectivity for High Affinity Folate Receptors over the Reduced Folate Carrier and Proton-Coupled Folate Transporter for Cellular Entry

A series of seven 2-amino-4-oxo-6-substituted thieno[2,3-d]pyrimidines with bridge length variations (from 2 to 8 carbon atoms) were synthesized as selective folate receptor (FR) α and β substrates and as antitumor agents. The syntheses were accomplished from appropriate allylalcohols and 4-iodobenz...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of medicinal chemistry 2009-05, Vol.52 (9), p.2940-2951
Hauptverfasser: Deng, Yijun, Zhou, Xilin, Kugel Desmoulin, Sita, Wu, Jianmei, Cherian, Christina, Hou, Zhanjun, Matherly, Larry H, Gangjee, Aleem
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
Beschreibung
Zusammenfassung:A series of seven 2-amino-4-oxo-6-substituted thieno[2,3-d]pyrimidines with bridge length variations (from 2 to 8 carbon atoms) were synthesized as selective folate receptor (FR) α and β substrates and as antitumor agents. The syntheses were accomplished from appropriate allylalcohols and 4-iodobenzoate to afford the aldehydes, which were converted to the appropriate 2-amino-4-carbethoxy-5-substituted thiophenes 23−29. Cyclization with chloroformamidine afforded the thieno[2,3-d]pyrimidines 30−36, which were hydrolyzed and coupled with diethyl-l-glutamate, followed by saponification, to give the target compounds 2−8. Compounds 3−6 were potent growth inhibitors (IC50 4.7−334 nM) of human tumor cells (KB and IGROV1) that express FRs. In addition, compounds 3−6 inhibited the growth of Chinese hamster ovary (CHO) cells that expressed FRs but not the reduced folate carrier (RFC) or proton-coupled folate transporter (PCFT). However, the compounds were inactive toward CHO cells that lacked FRs but contained either the RFC or PCFT. By nucleoside and 5-amino-4-imidazole carboxamide (AICA) protection studies, along with in vitro and in situ enzyme activity assays, the mechanism of antitumor activity was identified as the dual inhibition of glycinamide ribonucleotide formyltransferase and, likely, AICA ribonucleotide formyltransferase. The dual inhibitory activity of the active thieno[2,3-d]pyrimidine antifolates and the FR specificity represent unique mechanistic features for these compounds distinct from all other known antifolates. The potent inhibitory effects of compounds 3−6 toward cells expressing FRs but not PCFT provide direct evidence that cellular uptake of this series of compounds by FRs does not depend on the presence of PCFT and argues that direct coupling between these transporters is not obligatory.
ISSN:0022-2623
1520-4804
DOI:10.1021/jm8011323