Association Genetics of Coastal Douglas Fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-Hardiness Related Traits
Adaptation to cold is one of the greatest challenges to forest trees. This process is highly synchronized with environmental cues relating to photoperiod and temperature. Here, we use a candidate gene-based approach to search for genetic associations between 384 single-nucleotide polymorphism (SNP)...
Gespeichert in:
Veröffentlicht in: | Genetics (Austin) 2009-08, Vol.182 (4), p.1289-1302 |
---|---|
Hauptverfasser: | , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1302 |
---|---|
container_issue | 4 |
container_start_page | 1289 |
container_title | Genetics (Austin) |
container_volume | 182 |
creator | Eckert, Andrew J Bower, Andrew D Wegrzyn, Jill L Pande, Barnaly Jermstad, Kathleen D Krutovsky, Konstantin V St. Clair, J. Bradley Neale, David B |
description | Adaptation to cold is one of the greatest challenges to forest trees. This process is highly synchronized with environmental cues relating to photoperiod and temperature. Here, we use a candidate gene-based approach to search for genetic associations between 384 single-nucleotide polymorphism (SNP) markers from 117 candidate genes and 21 cold-hardiness related traits. A general linear model approach, including population structure estimates as covariates, was implemented for each marker-trait pair. We discovered 30 highly significant genetic associations [false discovery rate (FDR) Q < 0.10] across 12 candidate genes and 10 of the 21 traits. We also detected a set of 7 markers that had elevated levels of differentiation between sampling sites situated across the Cascade crest in northeastern Washington. Marker effects were small (r(2) < 0.05) and within the range of those published previously for forest trees. The derived SNP allele, as measured by a comparison to a recently diverged sister species, typically affected the phenotype in a way consistent with cold hardiness. The majority of markers were characterized as having largely nonadditive modes of gene action, especially underdominance in the case of cold-tolerance related phenotypes. We place these results in the context of trade-offs between the abilities to grow longer and to avoid fall cold damage, as well as putative epigenetic effects. These associations provide insight into the genetic components of complex traits in coastal Douglas fir, as well as highlight the need for landscape genetic approaches to the detection of adaptive genetic diversity. |
doi_str_mv | 10.1534/genetics.109.102350 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2728866</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>733971457</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4680-cc5d09388932d3a6608d880657fd212f81dd6d71f3b0ac9d96cfabc291a0c5663</originalsourceid><addsrcrecordid>eNpdkl1rFDEYhQdR7Fr9BYIGb1Rw1nzMZJIboaz2AwoWba_Du0lmNmV20uad6aIX_nZTd3XVixCSPO_hHE6K4jmjc1aL6n3nBz8Gi3NGdV5c1PRBMWO6EiWXgj0sZpQyWcpGsIPiCeI1pVTqWj0uDjKkmlrKWfHjCDHaAGOIAznZKZLYkkUEHKEnH-PU9YDkOCTy5gL95OKIUwdk7YfvwWMI5A7SfH98Ry7CANaDfzsnZ_Ms1LvyFJILg0ckX3wPo3fkMkEY8WnxqIUe_bPdflhcHX-6XJyW559PzhZH56WtpKKltbWjWiilBXcCpKTKKUVl3bSOM94q5px0DWvFkoLVTkvbwtJyzYDanFMcFh-2ujfTcu2d9cOYoDc3KawhfTMRgvn3ZQgr08U7wxuu1C-B1zuBFG8nj6NZB7S-72HwcULTCKEbVtVNJl_9R17HKQ05neGsYlw3QmdIbCGbImLy7R8rjJr7ds3vdvOFNtt289SLv1PsZ3Z17l2uQrfahOQNrqHvM87MZrNhipvKMK7uDbzcki1EA10KaK6-csoEZarK30aIn6o9uk4</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>214129739</pqid></control><display><type>article</type><title>Association Genetics of Coastal Douglas Fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-Hardiness Related Traits</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>Alma/SFX Local Collection</source><creator>Eckert, Andrew J ; Bower, Andrew D ; Wegrzyn, Jill L ; Pande, Barnaly ; Jermstad, Kathleen D ; Krutovsky, Konstantin V ; St. Clair, J. Bradley ; Neale, David B</creator><creatorcontrib>Eckert, Andrew J ; Bower, Andrew D ; Wegrzyn, Jill L ; Pande, Barnaly ; Jermstad, Kathleen D ; Krutovsky, Konstantin V ; St. Clair, J. Bradley ; Neale, David B</creatorcontrib><description>Adaptation to cold is one of the greatest challenges to forest trees. This process is highly synchronized with environmental cues relating to photoperiod and temperature. Here, we use a candidate gene-based approach to search for genetic associations between 384 single-nucleotide polymorphism (SNP) markers from 117 candidate genes and 21 cold-hardiness related traits. A general linear model approach, including population structure estimates as covariates, was implemented for each marker-trait pair. We discovered 30 highly significant genetic associations [false discovery rate (FDR) Q < 0.10] across 12 candidate genes and 10 of the 21 traits. We also detected a set of 7 markers that had elevated levels of differentiation between sampling sites situated across the Cascade crest in northeastern Washington. Marker effects were small (r(2) < 0.05) and within the range of those published previously for forest trees. The derived SNP allele, as measured by a comparison to a recently diverged sister species, typically affected the phenotype in a way consistent with cold hardiness. The majority of markers were characterized as having largely nonadditive modes of gene action, especially underdominance in the case of cold-tolerance related phenotypes. We place these results in the context of trade-offs between the abilities to grow longer and to avoid fall cold damage, as well as putative epigenetic effects. These associations provide insight into the genetic components of complex traits in coastal Douglas fir, as well as highlight the need for landscape genetic approaches to the detection of adaptive genetic diversity.</description><identifier>ISSN: 0016-6731</identifier><identifier>ISSN: 1943-2631</identifier><identifier>EISSN: 1943-2631</identifier><identifier>DOI: 10.1534/genetics.109.102350</identifier><identifier>PMID: 19487566</identifier><identifier>CODEN: GENTAE</identifier><language>eng</language><publisher>United States: Genetics Soc America</publisher><subject>Adaptation, Physiological - genetics ; association genetics ; candidate genes ; Cold ; Cold Climate ; cold tolerance ; Dissection ; Environment ; Epigenesis, Genetic ; Gene expression ; genes ; Genes, Plant ; Genetic diversity ; Genetic Markers ; Genetic Variation ; Genomics ; Geography ; Investigations ; plant genetics ; Polymorphism, Single Nucleotide ; population structure ; Pseudotsuga - genetics ; Pseudotsuga menziesii var. menziesii ; quantitative genetics ; quantitative traits ; single nucleotide polymorphism ; Temperature ; Washington ; winter hardiness</subject><ispartof>Genetics (Austin), 2009-08, Vol.182 (4), p.1289-1302</ispartof><rights>Copyright Genetics Society of America Aug 2009</rights><rights>Copyright © 2009 by the Genetics Society of America</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4680-cc5d09388932d3a6608d880657fd212f81dd6d71f3b0ac9d96cfabc291a0c5663</citedby><cites>FETCH-LOGICAL-c4680-cc5d09388932d3a6608d880657fd212f81dd6d71f3b0ac9d96cfabc291a0c5663</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,315,782,786,887,27931,27932</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19487566$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Eckert, Andrew J</creatorcontrib><creatorcontrib>Bower, Andrew D</creatorcontrib><creatorcontrib>Wegrzyn, Jill L</creatorcontrib><creatorcontrib>Pande, Barnaly</creatorcontrib><creatorcontrib>Jermstad, Kathleen D</creatorcontrib><creatorcontrib>Krutovsky, Konstantin V</creatorcontrib><creatorcontrib>St. Clair, J. Bradley</creatorcontrib><creatorcontrib>Neale, David B</creatorcontrib><title>Association Genetics of Coastal Douglas Fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-Hardiness Related Traits</title><title>Genetics (Austin)</title><addtitle>Genetics</addtitle><description>Adaptation to cold is one of the greatest challenges to forest trees. This process is highly synchronized with environmental cues relating to photoperiod and temperature. Here, we use a candidate gene-based approach to search for genetic associations between 384 single-nucleotide polymorphism (SNP) markers from 117 candidate genes and 21 cold-hardiness related traits. A general linear model approach, including population structure estimates as covariates, was implemented for each marker-trait pair. We discovered 30 highly significant genetic associations [false discovery rate (FDR) Q < 0.10] across 12 candidate genes and 10 of the 21 traits. We also detected a set of 7 markers that had elevated levels of differentiation between sampling sites situated across the Cascade crest in northeastern Washington. Marker effects were small (r(2) < 0.05) and within the range of those published previously for forest trees. The derived SNP allele, as measured by a comparison to a recently diverged sister species, typically affected the phenotype in a way consistent with cold hardiness. The majority of markers were characterized as having largely nonadditive modes of gene action, especially underdominance in the case of cold-tolerance related phenotypes. We place these results in the context of trade-offs between the abilities to grow longer and to avoid fall cold damage, as well as putative epigenetic effects. These associations provide insight into the genetic components of complex traits in coastal Douglas fir, as well as highlight the need for landscape genetic approaches to the detection of adaptive genetic diversity.</description><subject>Adaptation, Physiological - genetics</subject><subject>association genetics</subject><subject>candidate genes</subject><subject>Cold</subject><subject>Cold Climate</subject><subject>cold tolerance</subject><subject>Dissection</subject><subject>Environment</subject><subject>Epigenesis, Genetic</subject><subject>Gene expression</subject><subject>genes</subject><subject>Genes, Plant</subject><subject>Genetic diversity</subject><subject>Genetic Markers</subject><subject>Genetic Variation</subject><subject>Genomics</subject><subject>Geography</subject><subject>Investigations</subject><subject>plant genetics</subject><subject>Polymorphism, Single Nucleotide</subject><subject>population structure</subject><subject>Pseudotsuga - genetics</subject><subject>Pseudotsuga menziesii var. menziesii</subject><subject>quantitative genetics</subject><subject>quantitative traits</subject><subject>single nucleotide polymorphism</subject><subject>Temperature</subject><subject>Washington</subject><subject>winter hardiness</subject><issn>0016-6731</issn><issn>1943-2631</issn><issn>1943-2631</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNpdkl1rFDEYhQdR7Fr9BYIGb1Rw1nzMZJIboaz2AwoWba_Du0lmNmV20uad6aIX_nZTd3XVixCSPO_hHE6K4jmjc1aL6n3nBz8Gi3NGdV5c1PRBMWO6EiWXgj0sZpQyWcpGsIPiCeI1pVTqWj0uDjKkmlrKWfHjCDHaAGOIAznZKZLYkkUEHKEnH-PU9YDkOCTy5gL95OKIUwdk7YfvwWMI5A7SfH98Ry7CANaDfzsnZ_Ms1LvyFJILg0ckX3wPo3fkMkEY8WnxqIUe_bPdflhcHX-6XJyW559PzhZH56WtpKKltbWjWiilBXcCpKTKKUVl3bSOM94q5px0DWvFkoLVTkvbwtJyzYDanFMcFh-2ujfTcu2d9cOYoDc3KawhfTMRgvn3ZQgr08U7wxuu1C-B1zuBFG8nj6NZB7S-72HwcULTCKEbVtVNJl_9R17HKQ05neGsYlw3QmdIbCGbImLy7R8rjJr7ds3vdvOFNtt289SLv1PsZ3Z17l2uQrfahOQNrqHvM87MZrNhipvKMK7uDbzcki1EA10KaK6-csoEZarK30aIn6o9uk4</recordid><startdate>200908</startdate><enddate>200908</enddate><creator>Eckert, Andrew J</creator><creator>Bower, Andrew D</creator><creator>Wegrzyn, Jill L</creator><creator>Pande, Barnaly</creator><creator>Jermstad, Kathleen D</creator><creator>Krutovsky, Konstantin V</creator><creator>St. Clair, J. Bradley</creator><creator>Neale, David B</creator><general>Genetics Soc America</general><general>Genetics Society of America</general><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>4U-</scope><scope>7QP</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>K9-</scope><scope>K9.</scope><scope>LK8</scope><scope>M0K</scope><scope>M0R</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M2P</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200908</creationdate><title>Association Genetics of Coastal Douglas Fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-Hardiness Related Traits</title><author>Eckert, Andrew J ; Bower, Andrew D ; Wegrzyn, Jill L ; Pande, Barnaly ; Jermstad, Kathleen D ; Krutovsky, Konstantin V ; St. Clair, J. Bradley ; Neale, David B</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4680-cc5d09388932d3a6608d880657fd212f81dd6d71f3b0ac9d96cfabc291a0c5663</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adaptation, Physiological - genetics</topic><topic>association genetics</topic><topic>candidate genes</topic><topic>Cold</topic><topic>Cold Climate</topic><topic>cold tolerance</topic><topic>Dissection</topic><topic>Environment</topic><topic>Epigenesis, Genetic</topic><topic>Gene expression</topic><topic>genes</topic><topic>Genes, Plant</topic><topic>Genetic diversity</topic><topic>Genetic Markers</topic><topic>Genetic Variation</topic><topic>Genomics</topic><topic>Geography</topic><topic>Investigations</topic><topic>plant genetics</topic><topic>Polymorphism, Single Nucleotide</topic><topic>population structure</topic><topic>Pseudotsuga - genetics</topic><topic>Pseudotsuga menziesii var. menziesii</topic><topic>quantitative genetics</topic><topic>quantitative traits</topic><topic>single nucleotide polymorphism</topic><topic>Temperature</topic><topic>Washington</topic><topic>winter hardiness</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Eckert, Andrew J</creatorcontrib><creatorcontrib>Bower, Andrew D</creatorcontrib><creatorcontrib>Wegrzyn, Jill L</creatorcontrib><creatorcontrib>Pande, Barnaly</creatorcontrib><creatorcontrib>Jermstad, Kathleen D</creatorcontrib><creatorcontrib>Krutovsky, Konstantin V</creatorcontrib><creatorcontrib>St. Clair, J. Bradley</creatorcontrib><creatorcontrib>Neale, David B</creatorcontrib><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>University Readers</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection</collection><collection>Consumer Health Database (Alumni Edition)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Consumer Health Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Research Library</collection><collection>Science Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biological Science Database</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Genetics (Austin)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Eckert, Andrew J</au><au>Bower, Andrew D</au><au>Wegrzyn, Jill L</au><au>Pande, Barnaly</au><au>Jermstad, Kathleen D</au><au>Krutovsky, Konstantin V</au><au>St. Clair, J. Bradley</au><au>Neale, David B</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Association Genetics of Coastal Douglas Fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-Hardiness Related Traits</atitle><jtitle>Genetics (Austin)</jtitle><addtitle>Genetics</addtitle><date>2009-08</date><risdate>2009</risdate><volume>182</volume><issue>4</issue><spage>1289</spage><epage>1302</epage><pages>1289-1302</pages><issn>0016-6731</issn><issn>1943-2631</issn><eissn>1943-2631</eissn><coden>GENTAE</coden><abstract>Adaptation to cold is one of the greatest challenges to forest trees. This process is highly synchronized with environmental cues relating to photoperiod and temperature. Here, we use a candidate gene-based approach to search for genetic associations between 384 single-nucleotide polymorphism (SNP) markers from 117 candidate genes and 21 cold-hardiness related traits. A general linear model approach, including population structure estimates as covariates, was implemented for each marker-trait pair. We discovered 30 highly significant genetic associations [false discovery rate (FDR) Q < 0.10] across 12 candidate genes and 10 of the 21 traits. We also detected a set of 7 markers that had elevated levels of differentiation between sampling sites situated across the Cascade crest in northeastern Washington. Marker effects were small (r(2) < 0.05) and within the range of those published previously for forest trees. The derived SNP allele, as measured by a comparison to a recently diverged sister species, typically affected the phenotype in a way consistent with cold hardiness. The majority of markers were characterized as having largely nonadditive modes of gene action, especially underdominance in the case of cold-tolerance related phenotypes. We place these results in the context of trade-offs between the abilities to grow longer and to avoid fall cold damage, as well as putative epigenetic effects. These associations provide insight into the genetic components of complex traits in coastal Douglas fir, as well as highlight the need for landscape genetic approaches to the detection of adaptive genetic diversity.</abstract><cop>United States</cop><pub>Genetics Soc America</pub><pmid>19487566</pmid><doi>10.1534/genetics.109.102350</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0016-6731 |
ispartof | Genetics (Austin), 2009-08, Vol.182 (4), p.1289-1302 |
issn | 0016-6731 1943-2631 1943-2631 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2728866 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; Oxford University Press Journals All Titles (1996-Current); Alma/SFX Local Collection |
subjects | Adaptation, Physiological - genetics association genetics candidate genes Cold Cold Climate cold tolerance Dissection Environment Epigenesis, Genetic Gene expression genes Genes, Plant Genetic diversity Genetic Markers Genetic Variation Genomics Geography Investigations plant genetics Polymorphism, Single Nucleotide population structure Pseudotsuga - genetics Pseudotsuga menziesii var. menziesii quantitative genetics quantitative traits single nucleotide polymorphism Temperature Washington winter hardiness |
title | Association Genetics of Coastal Douglas Fir (Pseudotsuga menziesii var. menziesii, Pinaceae). I. Cold-Hardiness Related Traits |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-05T00%3A25%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Association%20Genetics%20of%20Coastal%20Douglas%20Fir%20(Pseudotsuga%20menziesii%20var.%20menziesii,%20Pinaceae).%20I.%20Cold-Hardiness%20Related%20Traits&rft.jtitle=Genetics%20(Austin)&rft.au=Eckert,%20Andrew%20J&rft.date=2009-08&rft.volume=182&rft.issue=4&rft.spage=1289&rft.epage=1302&rft.pages=1289-1302&rft.issn=0016-6731&rft.eissn=1943-2631&rft.coden=GENTAE&rft_id=info:doi/10.1534/genetics.109.102350&rft_dat=%3Cproquest_pubme%3E733971457%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=214129739&rft_id=info:pmid/19487566&rfr_iscdi=true |