Hin recombinase assembles a tetrameric protein swivel that exchanges DNA strands

Most site-specific recombinases can be grouped into two structurally and mechanistically different classes. Whereas recombination by tyrosine recombinases proceeds with little movements by the proteins, serine recombinases exchange DNA strands by a mechanism requiring large quaternary rearrangements...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Nucleic acids research 2009-08, Vol.37 (14), p.4743-4756
Hauptverfasser: Dhar, Gautam, McLean, Meghan M, Heiss, John K, Johnson, Reid C
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 4756
container_issue 14
container_start_page 4743
container_title Nucleic acids research
container_volume 37
creator Dhar, Gautam
McLean, Meghan M
Heiss, John K
Johnson, Reid C
description Most site-specific recombinases can be grouped into two structurally and mechanistically different classes. Whereas recombination by tyrosine recombinases proceeds with little movements by the proteins, serine recombinases exchange DNA strands by a mechanism requiring large quaternary rearrangements. Here we use site-directed crosslinking to investigate the conformational changes that accompany the formation of the synaptic complex and the exchange of DNA strands by the Hin serine recombinase. Efficient crosslinking between residues corresponding to the 'D-helix' region provides the first experimental evidence for interactions between synapsed subunits within this region and distinguishes between different tetrameric conformers that have been observed in crystal structures of related serine recombinases. Crosslinking profiles between cysteines introduced over the 35 residue E-helix region that constitutes most of the proposed rotating interface both support the long helical structure of the region and provide strong experimental support for a subunit rotation mechanism that mediates DNA exchange.
doi_str_mv 10.1093/nar/gkp466
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2724282</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/nar/gkp466</oup_id><sourcerecordid>67574175</sourcerecordid><originalsourceid>FETCH-LOGICAL-c526t-b32858dfb15d5ff664886ba01b3ff0e49e283bce361b281e693b4aab9720de4b3</originalsourceid><addsrcrecordid>eNqF0ctu1DAUBmALUdGhsOEBIEKCRaVQ3xNvKpXSMsCoIEEl1I1lJyczbpM42Elp3x6jjMplASsv_Om3z_kRekLwK4IVO-hNOFhfDVzKe2hBmKQ5V5LeRwvMsMgJ5uUuehjjJcaEE8EfoF2iBBGKsQX6tHR9FqDynXW9iZCZGKGzLcTMZCOMwXQQXJUNwY-QaPzurqHNxo0ZM7ipNqZfJ_rm7CiLyfZ1fIR2GtNGeLw999D56cmX42W--vj23fHRKq8ElWNuGS1FWTeWiFo0jZS8LKU1mFjWNBi4AloyWwGTxNKSgFTMcmOsKiiugVu2hw7n3GGyHdQV9On9Vg_BdSbcam-c_vOmdxu99teaFpTTkqaAl9uA4L9NEEfduVhB25oe_BS1LETBSSH-CykuFMacJfj8L3jpp9CnLSSDJWWCqoT2Z1QFH2OA5u7LBOufdepUp57rTPjp70P-otv-EngxAz8N_w7KZ-fiCDd30oSrNCcrhF5-vdAfyPvX-Oz0Qq-Sfzb7xnht1sFFff6ZYsIwkVIWJWc_AMkFwgI</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>200623529</pqid></control><display><type>article</type><title>Hin recombinase assembles a tetrameric protein swivel that exchanges DNA strands</title><source>Oxford Journals Open Access Collection</source><source>MEDLINE</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Dhar, Gautam ; McLean, Meghan M ; Heiss, John K ; Johnson, Reid C</creator><creatorcontrib>Dhar, Gautam ; McLean, Meghan M ; Heiss, John K ; Johnson, Reid C</creatorcontrib><description>Most site-specific recombinases can be grouped into two structurally and mechanistically different classes. Whereas recombination by tyrosine recombinases proceeds with little movements by the proteins, serine recombinases exchange DNA strands by a mechanism requiring large quaternary rearrangements. Here we use site-directed crosslinking to investigate the conformational changes that accompany the formation of the synaptic complex and the exchange of DNA strands by the Hin serine recombinase. Efficient crosslinking between residues corresponding to the 'D-helix' region provides the first experimental evidence for interactions between synapsed subunits within this region and distinguishes between different tetrameric conformers that have been observed in crystal structures of related serine recombinases. Crosslinking profiles between cysteines introduced over the 35 residue E-helix region that constitutes most of the proposed rotating interface both support the long helical structure of the region and provide strong experimental support for a subunit rotation mechanism that mediates DNA exchange.</description><identifier>ISSN: 0305-1048</identifier><identifier>EISSN: 1362-4962</identifier><identifier>DOI: 10.1093/nar/gkp466</identifier><identifier>PMID: 19515933</identifier><identifier>CODEN: NARHAD</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Amino Acid Sequence ; Cross-Linking Reagents ; Cysteine - chemistry ; DNA - chemistry ; DNA - metabolism ; DNA Nucleotidyltransferases - chemistry ; DNA Nucleotidyltransferases - genetics ; DNA Nucleotidyltransferases - metabolism ; Models, Molecular ; Molecular Sequence Data ; Mutation ; Nucleic Acid Enzymes ; Protein Multimerization ; Protein Subunits - chemistry ; Protein Subunits - metabolism ; Recombinases - chemistry ; Recombinases - genetics ; Recombinases - metabolism</subject><ispartof>Nucleic acids research, 2009-08, Vol.37 (14), p.4743-4756</ispartof><rights>2009 The Author(s) 2009</rights><rights>2009 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c526t-b32858dfb15d5ff664886ba01b3ff0e49e283bce361b281e693b4aab9720de4b3</citedby><cites>FETCH-LOGICAL-c526t-b32858dfb15d5ff664886ba01b3ff0e49e283bce361b281e693b4aab9720de4b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724282/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2724282/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,1598,27903,27904,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19515933$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dhar, Gautam</creatorcontrib><creatorcontrib>McLean, Meghan M</creatorcontrib><creatorcontrib>Heiss, John K</creatorcontrib><creatorcontrib>Johnson, Reid C</creatorcontrib><title>Hin recombinase assembles a tetrameric protein swivel that exchanges DNA strands</title><title>Nucleic acids research</title><addtitle>Nucleic Acids Res</addtitle><description>Most site-specific recombinases can be grouped into two structurally and mechanistically different classes. Whereas recombination by tyrosine recombinases proceeds with little movements by the proteins, serine recombinases exchange DNA strands by a mechanism requiring large quaternary rearrangements. Here we use site-directed crosslinking to investigate the conformational changes that accompany the formation of the synaptic complex and the exchange of DNA strands by the Hin serine recombinase. Efficient crosslinking between residues corresponding to the 'D-helix' region provides the first experimental evidence for interactions between synapsed subunits within this region and distinguishes between different tetrameric conformers that have been observed in crystal structures of related serine recombinases. Crosslinking profiles between cysteines introduced over the 35 residue E-helix region that constitutes most of the proposed rotating interface both support the long helical structure of the region and provide strong experimental support for a subunit rotation mechanism that mediates DNA exchange.</description><subject>Amino Acid Sequence</subject><subject>Cross-Linking Reagents</subject><subject>Cysteine - chemistry</subject><subject>DNA - chemistry</subject><subject>DNA - metabolism</subject><subject>DNA Nucleotidyltransferases - chemistry</subject><subject>DNA Nucleotidyltransferases - genetics</subject><subject>DNA Nucleotidyltransferases - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>Mutation</subject><subject>Nucleic Acid Enzymes</subject><subject>Protein Multimerization</subject><subject>Protein Subunits - chemistry</subject><subject>Protein Subunits - metabolism</subject><subject>Recombinases - chemistry</subject><subject>Recombinases - genetics</subject><subject>Recombinases - metabolism</subject><issn>0305-1048</issn><issn>1362-4962</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqF0ctu1DAUBmALUdGhsOEBIEKCRaVQ3xNvKpXSMsCoIEEl1I1lJyczbpM42Elp3x6jjMplASsv_Om3z_kRekLwK4IVO-hNOFhfDVzKe2hBmKQ5V5LeRwvMsMgJ5uUuehjjJcaEE8EfoF2iBBGKsQX6tHR9FqDynXW9iZCZGKGzLcTMZCOMwXQQXJUNwY-QaPzurqHNxo0ZM7ipNqZfJ_rm7CiLyfZ1fIR2GtNGeLw999D56cmX42W--vj23fHRKq8ElWNuGS1FWTeWiFo0jZS8LKU1mFjWNBi4AloyWwGTxNKSgFTMcmOsKiiugVu2hw7n3GGyHdQV9On9Vg_BdSbcam-c_vOmdxu99teaFpTTkqaAl9uA4L9NEEfduVhB25oe_BS1LETBSSH-CykuFMacJfj8L3jpp9CnLSSDJWWCqoT2Z1QFH2OA5u7LBOufdepUp57rTPjp70P-otv-EngxAz8N_w7KZ-fiCDd30oSrNCcrhF5-vdAfyPvX-Oz0Qq-Sfzb7xnht1sFFff6ZYsIwkVIWJWc_AMkFwgI</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Dhar, Gautam</creator><creator>McLean, Meghan M</creator><creator>Heiss, John K</creator><creator>Johnson, Reid C</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7QO</scope><scope>7QP</scope><scope>7QR</scope><scope>7SS</scope><scope>7TK</scope><scope>7TM</scope><scope>7U9</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>H94</scope><scope>K9.</scope><scope>M7N</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090801</creationdate><title>Hin recombinase assembles a tetrameric protein swivel that exchanges DNA strands</title><author>Dhar, Gautam ; McLean, Meghan M ; Heiss, John K ; Johnson, Reid C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c526t-b32858dfb15d5ff664886ba01b3ff0e49e283bce361b281e693b4aab9720de4b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>Cross-Linking Reagents</topic><topic>Cysteine - chemistry</topic><topic>DNA - chemistry</topic><topic>DNA - metabolism</topic><topic>DNA Nucleotidyltransferases - chemistry</topic><topic>DNA Nucleotidyltransferases - genetics</topic><topic>DNA Nucleotidyltransferases - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>Mutation</topic><topic>Nucleic Acid Enzymes</topic><topic>Protein Multimerization</topic><topic>Protein Subunits - chemistry</topic><topic>Protein Subunits - metabolism</topic><topic>Recombinases - chemistry</topic><topic>Recombinases - genetics</topic><topic>Recombinases - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dhar, Gautam</creatorcontrib><creatorcontrib>McLean, Meghan M</creatorcontrib><creatorcontrib>Heiss, John K</creatorcontrib><creatorcontrib>Johnson, Reid C</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Oxford Journals Open Access Collection</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Biotechnology Research Abstracts</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Nucleic acids research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dhar, Gautam</au><au>McLean, Meghan M</au><au>Heiss, John K</au><au>Johnson, Reid C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hin recombinase assembles a tetrameric protein swivel that exchanges DNA strands</atitle><jtitle>Nucleic acids research</jtitle><addtitle>Nucleic Acids Res</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>37</volume><issue>14</issue><spage>4743</spage><epage>4756</epage><pages>4743-4756</pages><issn>0305-1048</issn><eissn>1362-4962</eissn><coden>NARHAD</coden><abstract>Most site-specific recombinases can be grouped into two structurally and mechanistically different classes. Whereas recombination by tyrosine recombinases proceeds with little movements by the proteins, serine recombinases exchange DNA strands by a mechanism requiring large quaternary rearrangements. Here we use site-directed crosslinking to investigate the conformational changes that accompany the formation of the synaptic complex and the exchange of DNA strands by the Hin serine recombinase. Efficient crosslinking between residues corresponding to the 'D-helix' region provides the first experimental evidence for interactions between synapsed subunits within this region and distinguishes between different tetrameric conformers that have been observed in crystal structures of related serine recombinases. Crosslinking profiles between cysteines introduced over the 35 residue E-helix region that constitutes most of the proposed rotating interface both support the long helical structure of the region and provide strong experimental support for a subunit rotation mechanism that mediates DNA exchange.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>19515933</pmid><doi>10.1093/nar/gkp466</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0305-1048
ispartof Nucleic acids research, 2009-08, Vol.37 (14), p.4743-4756
issn 0305-1048
1362-4962
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2724282
source Oxford Journals Open Access Collection; MEDLINE; DOAJ Directory of Open Access Journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Amino Acid Sequence
Cross-Linking Reagents
Cysteine - chemistry
DNA - chemistry
DNA - metabolism
DNA Nucleotidyltransferases - chemistry
DNA Nucleotidyltransferases - genetics
DNA Nucleotidyltransferases - metabolism
Models, Molecular
Molecular Sequence Data
Mutation
Nucleic Acid Enzymes
Protein Multimerization
Protein Subunits - chemistry
Protein Subunits - metabolism
Recombinases - chemistry
Recombinases - genetics
Recombinases - metabolism
title Hin recombinase assembles a tetrameric protein swivel that exchanges DNA strands
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T19%3A39%3A25IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hin%20recombinase%20assembles%20a%20tetrameric%20protein%20swivel%20that%20exchanges%20DNA%20strands&rft.jtitle=Nucleic%20acids%20research&rft.au=Dhar,%20Gautam&rft.date=2009-08-01&rft.volume=37&rft.issue=14&rft.spage=4743&rft.epage=4756&rft.pages=4743-4756&rft.issn=0305-1048&rft.eissn=1362-4962&rft.coden=NARHAD&rft_id=info:doi/10.1093/nar/gkp466&rft_dat=%3Cproquest_pubme%3E67574175%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=200623529&rft_id=info:pmid/19515933&rft_oup_id=10.1093/nar/gkp466&rfr_iscdi=true