Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency

1 Department of Medicine, Division of Renal Diseases and Hypertension, and 2 Department of Physiology and Biophysics, University of Colorado Denver, Aurora, Colorado; 3 Department of Medicine, Division of Nephrology, Hypertension, and Transplantation, University of Florida, Gainesville, Florida; and...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of physiology. Renal physiology 2009-08, Vol.297 (2), p.F350-F361
Hauptverfasser: Breusegem, Sophia Y, Takahashi, Hideaki, Giral-Arnal, Hector, Wang, Xiaoxin, Jiang, Tao, Verlander, Jill W, Wilson, Paul, Miyazaki-Anzai, Shinobu, Sutherland, Eileen, Caldas, Yupanqui, Blaine, Judith T, Segawa, Hiroko, Miyamoto, Ken-ichi, Barry, Nicholas P, Levi, Moshe
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page F361
container_issue 2
container_start_page F350
container_title American journal of physiology. Renal physiology
container_volume 297
creator Breusegem, Sophia Y
Takahashi, Hideaki
Giral-Arnal, Hector
Wang, Xiaoxin
Jiang, Tao
Verlander, Jill W
Wilson, Paul
Miyazaki-Anzai, Shinobu
Sutherland, Eileen
Caldas, Yupanqui
Blaine, Judith T
Segawa, Hiroko
Miyamoto, Ken-ichi
Barry, Nicholas P
Levi, Moshe
description 1 Department of Medicine, Division of Renal Diseases and Hypertension, and 2 Department of Physiology and Biophysics, University of Colorado Denver, Aurora, Colorado; 3 Department of Medicine, Division of Nephrology, Hypertension, and Transplantation, University of Florida, Gainesville, Florida; and 4 Department of Molecular Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Submitted 23 December 2008 ; accepted in final form 19 May 2009 Dietary potassium (K) deficiency is accompanied by phosphaturia and decreased renal brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (P i ) transport activity. Our laboratory previously showed that K deficiency in rats leads to increased abundance in the proximal tubule BBM of the apical Na-P i cotransporter NaPi-IIa, but that the activity, diffusion, and clustering of NaPi-IIa could be modulated by the altered lipid composition of the K-deficient BBM (Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson P, Rogers T, Levi M. Kidney Int 60: 694–704, 2001; Inoue M, Digman MA, Cheng M, Breusegem SY, Halaihel N, Sorribas V, Mantulin WW, Gratton E, Barry NP, Levi M. J Biol Chem 279: 49160–49171, 2004). Here we investigated the role of the renal Na-P i cotransporters NaPi-IIc and PiT-2 in K deficiency. Using Western blotting, immunofluorescence, and quantitative real-time PCR, we found that, in rats and in mice, K deficiency is associated with a dramatic decrease in the NaPi-IIc protein abundance in proximal tubular BBM and in NaPi-IIc mRNA. In addition, we documented the presence of a third Na-coupled P i transporter in the renal BBM, PiT-2, whose abundance is also decreased by dietary K deficiency in rats and in mice. Finally, electron microscopy showed subcellular redistribution of NaPi-IIc in K deficiency: in control rats, NaPi-IIc immunolabel was primarily in BBM microvilli, whereas, in K-deficient rats, NaPi-IIc BBM label was reduced, and immunolabel was prevalent in cytoplasmic vesicles. In summary, our results demonstrate that decreases in BBM abundance of the phosphate transporter NaPi-IIc and also PiT-2 might contribute to the phosphaturia of dietary K deficiency, and that the three renal BBM phosphate transporters characterized so far can be differentially regulated by dietary perturbations. hypokalemia; phosphaturia; SLC34A1; SLC34A3; SLC20A2 Address for reprint requests and other correspondence: S. Breusegem, C
doi_str_mv 10.1152/ajprenal.90765.2008
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2724260</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>1805230801</sourcerecordid><originalsourceid>FETCH-LOGICAL-c535t-4da1b48614de11d44539df0233820d9c51b0f66dfb4914f1b3987289bb4fd5dc3</originalsourceid><addsrcrecordid>eNpdkUtv1DAURi0EokPhFyAhi0VXzdSvOPEGCRUKI1Wli7K2HD8mHmXiYDtUs-WX4-lMKbCypfvd43t9AHiL0RLjmlyozRTtqIalQA2vlwSh9hlYEMxxVerNc7BAlNOKY9KcgFcpbRAihLf8JTjBggkqOF2AX5-8c7ZwslcDjHY9Dyr7MMLgYO4tfHgBpmD8vK2mPqSpV9lCHXJUY5pCzDYmeKNufbVaqfPHmz6HajTw1t9VBPoRGm-zijs4haxSKixorPPa21HvXoMXTg3Jvjmep-D71ee7y6_V9bcvq8uP15WuaZ0rZhTuWMsxMxZjw1hNhXGIUNoSZISucYcc58Z1TGDmcEdF25BWdB1zpjaanoIPB-40d1trdNk5qkFO0W_LaDIoL_-tjL6X6_BTkoYwwlEBnB0BMfyYbcpy65O2w6BGG-YkeVNjxikpwff_BTdhjuUjkyQUYVKM7EP0ENIxpBSt-zMJRnIvWD4Klg-C5V5w6Xr39xJPPUejJbA8BHq_7u99tHLqd8mHIax3T0QiGknkFa0R_Q3TM7YJ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>230121272</pqid></control><display><type>article</type><title>Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency</title><source>MEDLINE</source><source>American Physiological Society</source><source>EZB-FREE-00999 freely available EZB journals</source><source>Alma/SFX Local Collection</source><creator>Breusegem, Sophia Y ; Takahashi, Hideaki ; Giral-Arnal, Hector ; Wang, Xiaoxin ; Jiang, Tao ; Verlander, Jill W ; Wilson, Paul ; Miyazaki-Anzai, Shinobu ; Sutherland, Eileen ; Caldas, Yupanqui ; Blaine, Judith T ; Segawa, Hiroko ; Miyamoto, Ken-ichi ; Barry, Nicholas P ; Levi, Moshe</creator><creatorcontrib>Breusegem, Sophia Y ; Takahashi, Hideaki ; Giral-Arnal, Hector ; Wang, Xiaoxin ; Jiang, Tao ; Verlander, Jill W ; Wilson, Paul ; Miyazaki-Anzai, Shinobu ; Sutherland, Eileen ; Caldas, Yupanqui ; Blaine, Judith T ; Segawa, Hiroko ; Miyamoto, Ken-ichi ; Barry, Nicholas P ; Levi, Moshe</creatorcontrib><description>1 Department of Medicine, Division of Renal Diseases and Hypertension, and 2 Department of Physiology and Biophysics, University of Colorado Denver, Aurora, Colorado; 3 Department of Medicine, Division of Nephrology, Hypertension, and Transplantation, University of Florida, Gainesville, Florida; and 4 Department of Molecular Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Submitted 23 December 2008 ; accepted in final form 19 May 2009 Dietary potassium (K) deficiency is accompanied by phosphaturia and decreased renal brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (P i ) transport activity. Our laboratory previously showed that K deficiency in rats leads to increased abundance in the proximal tubule BBM of the apical Na-P i cotransporter NaPi-IIa, but that the activity, diffusion, and clustering of NaPi-IIa could be modulated by the altered lipid composition of the K-deficient BBM (Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson P, Rogers T, Levi M. Kidney Int 60: 694–704, 2001; Inoue M, Digman MA, Cheng M, Breusegem SY, Halaihel N, Sorribas V, Mantulin WW, Gratton E, Barry NP, Levi M. J Biol Chem 279: 49160–49171, 2004). Here we investigated the role of the renal Na-P i cotransporters NaPi-IIc and PiT-2 in K deficiency. Using Western blotting, immunofluorescence, and quantitative real-time PCR, we found that, in rats and in mice, K deficiency is associated with a dramatic decrease in the NaPi-IIc protein abundance in proximal tubular BBM and in NaPi-IIc mRNA. In addition, we documented the presence of a third Na-coupled P i transporter in the renal BBM, PiT-2, whose abundance is also decreased by dietary K deficiency in rats and in mice. Finally, electron microscopy showed subcellular redistribution of NaPi-IIc in K deficiency: in control rats, NaPi-IIc immunolabel was primarily in BBM microvilli, whereas, in K-deficient rats, NaPi-IIc BBM label was reduced, and immunolabel was prevalent in cytoplasmic vesicles. In summary, our results demonstrate that decreases in BBM abundance of the phosphate transporter NaPi-IIc and also PiT-2 might contribute to the phosphaturia of dietary K deficiency, and that the three renal BBM phosphate transporters characterized so far can be differentially regulated by dietary perturbations. hypokalemia; phosphaturia; SLC34A1; SLC34A3; SLC20A2 Address for reprint requests and other correspondence: S. Breusegem, Cambridge Institute for Medical Research, Wellcome Trust/MRC Bldg., Hills Rd., Cambridge, CB2 0XY United Kingdom (e-mail: syab2{at}cam.ac.uk )</description><identifier>ISSN: 0363-6127</identifier><identifier>ISSN: 1931-857X</identifier><identifier>EISSN: 2161-1157</identifier><identifier>EISSN: 1522-1466</identifier><identifier>DOI: 10.1152/ajprenal.90765.2008</identifier><identifier>PMID: 19493963</identifier><language>eng</language><publisher>United States: American Physiological Society</publisher><subject>Animals ; Biological Transport ; Cell Membrane - metabolism ; Cytoplasmic Vesicles - metabolism ; Disease Models, Animal ; Gene Expression Regulation ; Hypophosphatemia - metabolism ; Kidney - metabolism ; Kidney - ultrastructure ; Kidneys ; Male ; Membranes ; Mice ; Mice, Inbred C57BL ; Microvilli - metabolism ; Phosphates ; Phosphorus, Dietary - blood ; Phosphorus, Dietary - metabolism ; Phosphorus, Dietary - urine ; Physiology ; Potassium ; Potassium Deficiency - genetics ; Potassium Deficiency - metabolism ; Protein Transport ; Proteins ; Rats ; Rats, Sprague-Dawley ; RNA, Messenger - metabolism ; Rodents ; Sodium ; Sodium-Phosphate Cotransporter Proteins, Type IIa - genetics ; Sodium-Phosphate Cotransporter Proteins, Type IIa - metabolism ; Sodium-Phosphate Cotransporter Proteins, Type IIc - genetics ; Sodium-Phosphate Cotransporter Proteins, Type IIc - metabolism ; Sodium-Phosphate Cotransporter Proteins, Type III - genetics ; Sodium-Phosphate Cotransporter Proteins, Type III - metabolism</subject><ispartof>American journal of physiology. Renal physiology, 2009-08, Vol.297 (2), p.F350-F361</ispartof><rights>Copyright American Physiological Society Aug 2009</rights><rights>Copyright © 2009, American Physiological Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c535t-4da1b48614de11d44539df0233820d9c51b0f66dfb4914f1b3987289bb4fd5dc3</citedby><cites>FETCH-LOGICAL-c535t-4da1b48614de11d44539df0233820d9c51b0f66dfb4914f1b3987289bb4fd5dc3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,3039,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19493963$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Breusegem, Sophia Y</creatorcontrib><creatorcontrib>Takahashi, Hideaki</creatorcontrib><creatorcontrib>Giral-Arnal, Hector</creatorcontrib><creatorcontrib>Wang, Xiaoxin</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Verlander, Jill W</creatorcontrib><creatorcontrib>Wilson, Paul</creatorcontrib><creatorcontrib>Miyazaki-Anzai, Shinobu</creatorcontrib><creatorcontrib>Sutherland, Eileen</creatorcontrib><creatorcontrib>Caldas, Yupanqui</creatorcontrib><creatorcontrib>Blaine, Judith T</creatorcontrib><creatorcontrib>Segawa, Hiroko</creatorcontrib><creatorcontrib>Miyamoto, Ken-ichi</creatorcontrib><creatorcontrib>Barry, Nicholas P</creatorcontrib><creatorcontrib>Levi, Moshe</creatorcontrib><title>Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency</title><title>American journal of physiology. Renal physiology</title><addtitle>Am J Physiol Renal Physiol</addtitle><description>1 Department of Medicine, Division of Renal Diseases and Hypertension, and 2 Department of Physiology and Biophysics, University of Colorado Denver, Aurora, Colorado; 3 Department of Medicine, Division of Nephrology, Hypertension, and Transplantation, University of Florida, Gainesville, Florida; and 4 Department of Molecular Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Submitted 23 December 2008 ; accepted in final form 19 May 2009 Dietary potassium (K) deficiency is accompanied by phosphaturia and decreased renal brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (P i ) transport activity. Our laboratory previously showed that K deficiency in rats leads to increased abundance in the proximal tubule BBM of the apical Na-P i cotransporter NaPi-IIa, but that the activity, diffusion, and clustering of NaPi-IIa could be modulated by the altered lipid composition of the K-deficient BBM (Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson P, Rogers T, Levi M. Kidney Int 60: 694–704, 2001; Inoue M, Digman MA, Cheng M, Breusegem SY, Halaihel N, Sorribas V, Mantulin WW, Gratton E, Barry NP, Levi M. J Biol Chem 279: 49160–49171, 2004). Here we investigated the role of the renal Na-P i cotransporters NaPi-IIc and PiT-2 in K deficiency. Using Western blotting, immunofluorescence, and quantitative real-time PCR, we found that, in rats and in mice, K deficiency is associated with a dramatic decrease in the NaPi-IIc protein abundance in proximal tubular BBM and in NaPi-IIc mRNA. In addition, we documented the presence of a third Na-coupled P i transporter in the renal BBM, PiT-2, whose abundance is also decreased by dietary K deficiency in rats and in mice. Finally, electron microscopy showed subcellular redistribution of NaPi-IIc in K deficiency: in control rats, NaPi-IIc immunolabel was primarily in BBM microvilli, whereas, in K-deficient rats, NaPi-IIc BBM label was reduced, and immunolabel was prevalent in cytoplasmic vesicles. In summary, our results demonstrate that decreases in BBM abundance of the phosphate transporter NaPi-IIc and also PiT-2 might contribute to the phosphaturia of dietary K deficiency, and that the three renal BBM phosphate transporters characterized so far can be differentially regulated by dietary perturbations. hypokalemia; phosphaturia; SLC34A1; SLC34A3; SLC20A2 Address for reprint requests and other correspondence: S. Breusegem, Cambridge Institute for Medical Research, Wellcome Trust/MRC Bldg., Hills Rd., Cambridge, CB2 0XY United Kingdom (e-mail: syab2{at}cam.ac.uk )</description><subject>Animals</subject><subject>Biological Transport</subject><subject>Cell Membrane - metabolism</subject><subject>Cytoplasmic Vesicles - metabolism</subject><subject>Disease Models, Animal</subject><subject>Gene Expression Regulation</subject><subject>Hypophosphatemia - metabolism</subject><subject>Kidney - metabolism</subject><subject>Kidney - ultrastructure</subject><subject>Kidneys</subject><subject>Male</subject><subject>Membranes</subject><subject>Mice</subject><subject>Mice, Inbred C57BL</subject><subject>Microvilli - metabolism</subject><subject>Phosphates</subject><subject>Phosphorus, Dietary - blood</subject><subject>Phosphorus, Dietary - metabolism</subject><subject>Phosphorus, Dietary - urine</subject><subject>Physiology</subject><subject>Potassium</subject><subject>Potassium Deficiency - genetics</subject><subject>Potassium Deficiency - metabolism</subject><subject>Protein Transport</subject><subject>Proteins</subject><subject>Rats</subject><subject>Rats, Sprague-Dawley</subject><subject>RNA, Messenger - metabolism</subject><subject>Rodents</subject><subject>Sodium</subject><subject>Sodium-Phosphate Cotransporter Proteins, Type IIa - genetics</subject><subject>Sodium-Phosphate Cotransporter Proteins, Type IIa - metabolism</subject><subject>Sodium-Phosphate Cotransporter Proteins, Type IIc - genetics</subject><subject>Sodium-Phosphate Cotransporter Proteins, Type IIc - metabolism</subject><subject>Sodium-Phosphate Cotransporter Proteins, Type III - genetics</subject><subject>Sodium-Phosphate Cotransporter Proteins, Type III - metabolism</subject><issn>0363-6127</issn><issn>1931-857X</issn><issn>2161-1157</issn><issn>1522-1466</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNpdkUtv1DAURi0EokPhFyAhi0VXzdSvOPEGCRUKI1Wli7K2HD8mHmXiYDtUs-WX4-lMKbCypfvd43t9AHiL0RLjmlyozRTtqIalQA2vlwSh9hlYEMxxVerNc7BAlNOKY9KcgFcpbRAihLf8JTjBggkqOF2AX5-8c7ZwslcDjHY9Dyr7MMLgYO4tfHgBpmD8vK2mPqSpV9lCHXJUY5pCzDYmeKNufbVaqfPHmz6HajTw1t9VBPoRGm-zijs4haxSKixorPPa21HvXoMXTg3Jvjmep-D71ee7y6_V9bcvq8uP15WuaZ0rZhTuWMsxMxZjw1hNhXGIUNoSZISucYcc58Z1TGDmcEdF25BWdB1zpjaanoIPB-40d1trdNk5qkFO0W_LaDIoL_-tjL6X6_BTkoYwwlEBnB0BMfyYbcpy65O2w6BGG-YkeVNjxikpwff_BTdhjuUjkyQUYVKM7EP0ENIxpBSt-zMJRnIvWD4Klg-C5V5w6Xr39xJPPUejJbA8BHq_7u99tHLqd8mHIax3T0QiGknkFa0R_Q3TM7YJ</recordid><startdate>20090801</startdate><enddate>20090801</enddate><creator>Breusegem, Sophia Y</creator><creator>Takahashi, Hideaki</creator><creator>Giral-Arnal, Hector</creator><creator>Wang, Xiaoxin</creator><creator>Jiang, Tao</creator><creator>Verlander, Jill W</creator><creator>Wilson, Paul</creator><creator>Miyazaki-Anzai, Shinobu</creator><creator>Sutherland, Eileen</creator><creator>Caldas, Yupanqui</creator><creator>Blaine, Judith T</creator><creator>Segawa, Hiroko</creator><creator>Miyamoto, Ken-ichi</creator><creator>Barry, Nicholas P</creator><creator>Levi, Moshe</creator><general>American Physiological Society</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090801</creationdate><title>Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency</title><author>Breusegem, Sophia Y ; Takahashi, Hideaki ; Giral-Arnal, Hector ; Wang, Xiaoxin ; Jiang, Tao ; Verlander, Jill W ; Wilson, Paul ; Miyazaki-Anzai, Shinobu ; Sutherland, Eileen ; Caldas, Yupanqui ; Blaine, Judith T ; Segawa, Hiroko ; Miyamoto, Ken-ichi ; Barry, Nicholas P ; Levi, Moshe</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c535t-4da1b48614de11d44539df0233820d9c51b0f66dfb4914f1b3987289bb4fd5dc3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Animals</topic><topic>Biological Transport</topic><topic>Cell Membrane - metabolism</topic><topic>Cytoplasmic Vesicles - metabolism</topic><topic>Disease Models, Animal</topic><topic>Gene Expression Regulation</topic><topic>Hypophosphatemia - metabolism</topic><topic>Kidney - metabolism</topic><topic>Kidney - ultrastructure</topic><topic>Kidneys</topic><topic>Male</topic><topic>Membranes</topic><topic>Mice</topic><topic>Mice, Inbred C57BL</topic><topic>Microvilli - metabolism</topic><topic>Phosphates</topic><topic>Phosphorus, Dietary - blood</topic><topic>Phosphorus, Dietary - metabolism</topic><topic>Phosphorus, Dietary - urine</topic><topic>Physiology</topic><topic>Potassium</topic><topic>Potassium Deficiency - genetics</topic><topic>Potassium Deficiency - metabolism</topic><topic>Protein Transport</topic><topic>Proteins</topic><topic>Rats</topic><topic>Rats, Sprague-Dawley</topic><topic>RNA, Messenger - metabolism</topic><topic>Rodents</topic><topic>Sodium</topic><topic>Sodium-Phosphate Cotransporter Proteins, Type IIa - genetics</topic><topic>Sodium-Phosphate Cotransporter Proteins, Type IIa - metabolism</topic><topic>Sodium-Phosphate Cotransporter Proteins, Type IIc - genetics</topic><topic>Sodium-Phosphate Cotransporter Proteins, Type IIc - metabolism</topic><topic>Sodium-Phosphate Cotransporter Proteins, Type III - genetics</topic><topic>Sodium-Phosphate Cotransporter Proteins, Type III - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Breusegem, Sophia Y</creatorcontrib><creatorcontrib>Takahashi, Hideaki</creatorcontrib><creatorcontrib>Giral-Arnal, Hector</creatorcontrib><creatorcontrib>Wang, Xiaoxin</creatorcontrib><creatorcontrib>Jiang, Tao</creatorcontrib><creatorcontrib>Verlander, Jill W</creatorcontrib><creatorcontrib>Wilson, Paul</creatorcontrib><creatorcontrib>Miyazaki-Anzai, Shinobu</creatorcontrib><creatorcontrib>Sutherland, Eileen</creatorcontrib><creatorcontrib>Caldas, Yupanqui</creatorcontrib><creatorcontrib>Blaine, Judith T</creatorcontrib><creatorcontrib>Segawa, Hiroko</creatorcontrib><creatorcontrib>Miyamoto, Ken-ichi</creatorcontrib><creatorcontrib>Barry, Nicholas P</creatorcontrib><creatorcontrib>Levi, Moshe</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of physiology. Renal physiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Breusegem, Sophia Y</au><au>Takahashi, Hideaki</au><au>Giral-Arnal, Hector</au><au>Wang, Xiaoxin</au><au>Jiang, Tao</au><au>Verlander, Jill W</au><au>Wilson, Paul</au><au>Miyazaki-Anzai, Shinobu</au><au>Sutherland, Eileen</au><au>Caldas, Yupanqui</au><au>Blaine, Judith T</au><au>Segawa, Hiroko</au><au>Miyamoto, Ken-ichi</au><au>Barry, Nicholas P</au><au>Levi, Moshe</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency</atitle><jtitle>American journal of physiology. Renal physiology</jtitle><addtitle>Am J Physiol Renal Physiol</addtitle><date>2009-08-01</date><risdate>2009</risdate><volume>297</volume><issue>2</issue><spage>F350</spage><epage>F361</epage><pages>F350-F361</pages><issn>0363-6127</issn><issn>1931-857X</issn><eissn>2161-1157</eissn><eissn>1522-1466</eissn><abstract>1 Department of Medicine, Division of Renal Diseases and Hypertension, and 2 Department of Physiology and Biophysics, University of Colorado Denver, Aurora, Colorado; 3 Department of Medicine, Division of Nephrology, Hypertension, and Transplantation, University of Florida, Gainesville, Florida; and 4 Department of Molecular Nutrition, Institute of Health Biosciences, University of Tokushima Graduate School, Tokushima, Japan Submitted 23 December 2008 ; accepted in final form 19 May 2009 Dietary potassium (K) deficiency is accompanied by phosphaturia and decreased renal brush border membrane (BBM) vesicle sodium (Na)-dependent phosphate (P i ) transport activity. Our laboratory previously showed that K deficiency in rats leads to increased abundance in the proximal tubule BBM of the apical Na-P i cotransporter NaPi-IIa, but that the activity, diffusion, and clustering of NaPi-IIa could be modulated by the altered lipid composition of the K-deficient BBM (Zajicek HK, Wang H, Puttaparthi K, Halaihel N, Markovich D, Shayman J, Beliveau R, Wilson P, Rogers T, Levi M. Kidney Int 60: 694–704, 2001; Inoue M, Digman MA, Cheng M, Breusegem SY, Halaihel N, Sorribas V, Mantulin WW, Gratton E, Barry NP, Levi M. J Biol Chem 279: 49160–49171, 2004). Here we investigated the role of the renal Na-P i cotransporters NaPi-IIc and PiT-2 in K deficiency. Using Western blotting, immunofluorescence, and quantitative real-time PCR, we found that, in rats and in mice, K deficiency is associated with a dramatic decrease in the NaPi-IIc protein abundance in proximal tubular BBM and in NaPi-IIc mRNA. In addition, we documented the presence of a third Na-coupled P i transporter in the renal BBM, PiT-2, whose abundance is also decreased by dietary K deficiency in rats and in mice. Finally, electron microscopy showed subcellular redistribution of NaPi-IIc in K deficiency: in control rats, NaPi-IIc immunolabel was primarily in BBM microvilli, whereas, in K-deficient rats, NaPi-IIc BBM label was reduced, and immunolabel was prevalent in cytoplasmic vesicles. In summary, our results demonstrate that decreases in BBM abundance of the phosphate transporter NaPi-IIc and also PiT-2 might contribute to the phosphaturia of dietary K deficiency, and that the three renal BBM phosphate transporters characterized so far can be differentially regulated by dietary perturbations. hypokalemia; phosphaturia; SLC34A1; SLC34A3; SLC20A2 Address for reprint requests and other correspondence: S. Breusegem, Cambridge Institute for Medical Research, Wellcome Trust/MRC Bldg., Hills Rd., Cambridge, CB2 0XY United Kingdom (e-mail: syab2{at}cam.ac.uk )</abstract><cop>United States</cop><pub>American Physiological Society</pub><pmid>19493963</pmid><doi>10.1152/ajprenal.90765.2008</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0363-6127
ispartof American journal of physiology. Renal physiology, 2009-08, Vol.297 (2), p.F350-F361
issn 0363-6127
1931-857X
2161-1157
1522-1466
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2724260
source MEDLINE; American Physiological Society; EZB-FREE-00999 freely available EZB journals; Alma/SFX Local Collection
subjects Animals
Biological Transport
Cell Membrane - metabolism
Cytoplasmic Vesicles - metabolism
Disease Models, Animal
Gene Expression Regulation
Hypophosphatemia - metabolism
Kidney - metabolism
Kidney - ultrastructure
Kidneys
Male
Membranes
Mice
Mice, Inbred C57BL
Microvilli - metabolism
Phosphates
Phosphorus, Dietary - blood
Phosphorus, Dietary - metabolism
Phosphorus, Dietary - urine
Physiology
Potassium
Potassium Deficiency - genetics
Potassium Deficiency - metabolism
Protein Transport
Proteins
Rats
Rats, Sprague-Dawley
RNA, Messenger - metabolism
Rodents
Sodium
Sodium-Phosphate Cotransporter Proteins, Type IIa - genetics
Sodium-Phosphate Cotransporter Proteins, Type IIa - metabolism
Sodium-Phosphate Cotransporter Proteins, Type IIc - genetics
Sodium-Phosphate Cotransporter Proteins, Type IIc - metabolism
Sodium-Phosphate Cotransporter Proteins, Type III - genetics
Sodium-Phosphate Cotransporter Proteins, Type III - metabolism
title Differential regulation of the renal sodium-phosphate cotransporters NaPi-IIa, NaPi-IIc, and PiT-2 in dietary potassium deficiency
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T02%3A55%3A50IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Differential%20regulation%20of%20the%20renal%20sodium-phosphate%20cotransporters%20NaPi-IIa,%20NaPi-IIc,%20and%20PiT-2%20in%20dietary%20potassium%20deficiency&rft.jtitle=American%20journal%20of%20physiology.%20Renal%20physiology&rft.au=Breusegem,%20Sophia%20Y&rft.date=2009-08-01&rft.volume=297&rft.issue=2&rft.spage=F350&rft.epage=F361&rft.pages=F350-F361&rft.issn=0363-6127&rft.eissn=2161-1157&rft_id=info:doi/10.1152/ajprenal.90765.2008&rft_dat=%3Cproquest_pubme%3E1805230801%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=230121272&rft_id=info:pmid/19493963&rfr_iscdi=true