The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes

Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of u...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-06, Vol.284 (26), p.17835-17845
Hauptverfasser: Paxman, Jason J., Borg, Natalie A., Horne, James, Thompson, Philip E., Chin, Yanni, Sharma, Pooja, Simpson, Jamie S., Wielens, Jerome, Piek, Susannah, Kahler, Charlene M., Sakellaris, Harry, Pearce, Mary, Bottomley, Stephen P., Rossjohn, Jamie, Scanlon, Martin J.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 17845
container_issue 26
container_start_page 17835
container_title The Journal of biological chemistry
container_volume 284
creator Paxman, Jason J.
Borg, Natalie A.
Horne, James
Thompson, Philip E.
Chin, Yanni
Sharma, Pooja
Simpson, Jamie S.
Wielens, Jerome
Piek, Susannah
Kahler, Charlene M.
Sakellaris, Harry
Pearce, Mary
Bottomley, Stephen P.
Rossjohn, Jamie
Scanlon, Martin J.
description Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the complex.
doi_str_mv 10.1074/jbc.M109.011502
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2719422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819820665</els_id><sourcerecordid>21098431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-51f70b4486594b91c373c2e32b96a8c081455c4f59094368af40effdabc29c7d3</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEoqWwZgcWQuxm6mcSbyq1Q3lIRUVMK7GzHOdm4iqJB9uZdvg9_FA8zYjHAuGNJd_P59xrnyx7TvCc4IIf31Rm_olgOceECEwfZIcEl2zGBPn6MDvEmJKZpKI8yJ6EcIPT4pI8zg6IZKUsCDnMfly1gJbRjyaOHpBrUEwHZ9pE8FZ36PLO1s5Dneo6ADofvm97QG9DdYrsgBauX3dwh25tbJFGn2EdbQ3oC2xAdyGdnOlgA2qcR8uxCtHrmNzWYGxjjY3bncbOb6Gj7rbRGrTYmu6-jXuLyS48zR41SQ-e7fej7Prd-dXiw-zi8v3HxenFzAhB40yQpsAV52UuJK8kMaxghgKjlcx1aXBJuBCGN0JiyVle6oZjaJpaV4ZKU9TsKDuZdNdj1UNtYEgdd2rtba_9Vjlt1d-VwbZq5TaKFkRySpPAq0nAhWhVSCOCaY0bBjBREYxzwmSC3uxdvPs2Qoiqt8FA1-kB3BhUXnAsirL8L0jTx5eckQQeT6DxLgQPza-WCVa7nKiUE7XLiZpykm68-HPS3_w-GAl4PQGtXbW31oOqrDMt9IqWXNFckaJkImEvJ6zRTumVt0FdLykmDJOc87woEiEnAtLHbSz43bPAYKBOoulVamf_2eVPSU7jFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21098431</pqid></control><display><type>article</type><title>The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Paxman, Jason J. ; Borg, Natalie A. ; Horne, James ; Thompson, Philip E. ; Chin, Yanni ; Sharma, Pooja ; Simpson, Jamie S. ; Wielens, Jerome ; Piek, Susannah ; Kahler, Charlene M. ; Sakellaris, Harry ; Pearce, Mary ; Bottomley, Stephen P. ; Rossjohn, Jamie ; Scanlon, Martin J.</creator><creatorcontrib>Paxman, Jason J. ; Borg, Natalie A. ; Horne, James ; Thompson, Philip E. ; Chin, Yanni ; Sharma, Pooja ; Simpson, Jamie S. ; Wielens, Jerome ; Piek, Susannah ; Kahler, Charlene M. ; Sakellaris, Harry ; Pearce, Mary ; Bottomley, Stephen P. ; Rossjohn, Jamie ; Scanlon, Martin J. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the complex.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.011502</identifier><identifier>PMID: 19389711</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; BACTERIA ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding Sites ; Catalysis ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; CYSTEINE ; DISULFIDES ; Disulfides - metabolism ; ENZYMES ; ESCHERICHIA COLI ; Escherichia coli - enzymology ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; FUNCTIONALS ; Magnetic Resonance Spectroscopy ; MATERIALS SCIENCE ; MEMBRANE PROTEINS ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Models, Molecular ; Molecular Sequence Data ; NUCLEAR MAGNETIC RESONANCE ; OXIDOREDUCTASES ; Peptide Fragments - metabolism ; PEPTIDES ; Protein Conformation ; Protein Disulfide-Isomerases - chemistry ; Protein Disulfide-Isomerases - genetics ; Protein Disulfide-Isomerases - metabolism ; Protein Structure and Folding ; PROTEINS ; RESIDUES ; Sequence Homology, Amino Acid ; SPECIFICITY ; Substrate Specificity ; SUBSTRATES ; TRANSIENTS</subject><ispartof>The Journal of biological chemistry, 2009-06, Vol.284 (26), p.17835-17845</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2009 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-51f70b4486594b91c373c2e32b96a8c081455c4f59094368af40effdabc29c7d3</citedby><cites>FETCH-LOGICAL-c552t-51f70b4486594b91c373c2e32b96a8c081455c4f59094368af40effdabc29c7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719422/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719422/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19389711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1006139$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Paxman, Jason J.</creatorcontrib><creatorcontrib>Borg, Natalie A.</creatorcontrib><creatorcontrib>Horne, James</creatorcontrib><creatorcontrib>Thompson, Philip E.</creatorcontrib><creatorcontrib>Chin, Yanni</creatorcontrib><creatorcontrib>Sharma, Pooja</creatorcontrib><creatorcontrib>Simpson, Jamie S.</creatorcontrib><creatorcontrib>Wielens, Jerome</creatorcontrib><creatorcontrib>Piek, Susannah</creatorcontrib><creatorcontrib>Kahler, Charlene M.</creatorcontrib><creatorcontrib>Sakellaris, Harry</creatorcontrib><creatorcontrib>Pearce, Mary</creatorcontrib><creatorcontrib>Bottomley, Stephen P.</creatorcontrib><creatorcontrib>Rossjohn, Jamie</creatorcontrib><creatorcontrib>Scanlon, Martin J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the complex.</description><subject>Amino Acid Sequence</subject><subject>BACTERIA</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>CYSTEINE</subject><subject>DISULFIDES</subject><subject>Disulfides - metabolism</subject><subject>ENZYMES</subject><subject>ESCHERICHIA COLI</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>FUNCTIONALS</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>MATERIALS SCIENCE</subject><subject>MEMBRANE PROTEINS</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>NUCLEAR MAGNETIC RESONANCE</subject><subject>OXIDOREDUCTASES</subject><subject>Peptide Fragments - metabolism</subject><subject>PEPTIDES</subject><subject>Protein Conformation</subject><subject>Protein Disulfide-Isomerases - chemistry</subject><subject>Protein Disulfide-Isomerases - genetics</subject><subject>Protein Disulfide-Isomerases - metabolism</subject><subject>Protein Structure and Folding</subject><subject>PROTEINS</subject><subject>RESIDUES</subject><subject>Sequence Homology, Amino Acid</subject><subject>SPECIFICITY</subject><subject>Substrate Specificity</subject><subject>SUBSTRATES</subject><subject>TRANSIENTS</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktv1DAUhSMEoqWwZgcWQuxm6mcSbyq1Q3lIRUVMK7GzHOdm4iqJB9uZdvg9_FA8zYjHAuGNJd_P59xrnyx7TvCc4IIf31Rm_olgOceECEwfZIcEl2zGBPn6MDvEmJKZpKI8yJ6EcIPT4pI8zg6IZKUsCDnMfly1gJbRjyaOHpBrUEwHZ9pE8FZ36PLO1s5Dneo6ADofvm97QG9DdYrsgBauX3dwh25tbJFGn2EdbQ3oC2xAdyGdnOlgA2qcR8uxCtHrmNzWYGxjjY3bncbOb6Gj7rbRGrTYmu6-jXuLyS48zR41SQ-e7fej7Prd-dXiw-zi8v3HxenFzAhB40yQpsAV52UuJK8kMaxghgKjlcx1aXBJuBCGN0JiyVle6oZjaJpaV4ZKU9TsKDuZdNdj1UNtYEgdd2rtba_9Vjlt1d-VwbZq5TaKFkRySpPAq0nAhWhVSCOCaY0bBjBREYxzwmSC3uxdvPs2Qoiqt8FA1-kB3BhUXnAsirL8L0jTx5eckQQeT6DxLgQPza-WCVa7nKiUE7XLiZpykm68-HPS3_w-GAl4PQGtXbW31oOqrDMt9IqWXNFckaJkImEvJ6zRTumVt0FdLykmDJOc87woEiEnAtLHbSz43bPAYKBOoulVamf_2eVPSU7jFA</recordid><startdate>20090626</startdate><enddate>20090626</enddate><creator>Paxman, Jason J.</creator><creator>Borg, Natalie A.</creator><creator>Horne, James</creator><creator>Thompson, Philip E.</creator><creator>Chin, Yanni</creator><creator>Sharma, Pooja</creator><creator>Simpson, Jamie S.</creator><creator>Wielens, Jerome</creator><creator>Piek, Susannah</creator><creator>Kahler, Charlene M.</creator><creator>Sakellaris, Harry</creator><creator>Pearce, Mary</creator><creator>Bottomley, Stephen P.</creator><creator>Rossjohn, Jamie</creator><creator>Scanlon, Martin J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20090626</creationdate><title>The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes</title><author>Paxman, Jason J. ; Borg, Natalie A. ; Horne, James ; Thompson, Philip E. ; Chin, Yanni ; Sharma, Pooja ; Simpson, Jamie S. ; Wielens, Jerome ; Piek, Susannah ; Kahler, Charlene M. ; Sakellaris, Harry ; Pearce, Mary ; Bottomley, Stephen P. ; Rossjohn, Jamie ; Scanlon, Martin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-51f70b4486594b91c373c2e32b96a8c081455c4f59094368af40effdabc29c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>BACTERIA</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>CYSTEINE</topic><topic>DISULFIDES</topic><topic>Disulfides - metabolism</topic><topic>ENZYMES</topic><topic>ESCHERICHIA COLI</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>FUNCTIONALS</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>MATERIALS SCIENCE</topic><topic>MEMBRANE PROTEINS</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>NUCLEAR MAGNETIC RESONANCE</topic><topic>OXIDOREDUCTASES</topic><topic>Peptide Fragments - metabolism</topic><topic>PEPTIDES</topic><topic>Protein Conformation</topic><topic>Protein Disulfide-Isomerases - chemistry</topic><topic>Protein Disulfide-Isomerases - genetics</topic><topic>Protein Disulfide-Isomerases - metabolism</topic><topic>Protein Structure and Folding</topic><topic>PROTEINS</topic><topic>RESIDUES</topic><topic>Sequence Homology, Amino Acid</topic><topic>SPECIFICITY</topic><topic>Substrate Specificity</topic><topic>SUBSTRATES</topic><topic>TRANSIENTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paxman, Jason J.</creatorcontrib><creatorcontrib>Borg, Natalie A.</creatorcontrib><creatorcontrib>Horne, James</creatorcontrib><creatorcontrib>Thompson, Philip E.</creatorcontrib><creatorcontrib>Chin, Yanni</creatorcontrib><creatorcontrib>Sharma, Pooja</creatorcontrib><creatorcontrib>Simpson, Jamie S.</creatorcontrib><creatorcontrib>Wielens, Jerome</creatorcontrib><creatorcontrib>Piek, Susannah</creatorcontrib><creatorcontrib>Kahler, Charlene M.</creatorcontrib><creatorcontrib>Sakellaris, Harry</creatorcontrib><creatorcontrib>Pearce, Mary</creatorcontrib><creatorcontrib>Bottomley, Stephen P.</creatorcontrib><creatorcontrib>Rossjohn, Jamie</creatorcontrib><creatorcontrib>Scanlon, Martin J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paxman, Jason J.</au><au>Borg, Natalie A.</au><au>Horne, James</au><au>Thompson, Philip E.</au><au>Chin, Yanni</au><au>Sharma, Pooja</au><au>Simpson, Jamie S.</au><au>Wielens, Jerome</au><au>Piek, Susannah</au><au>Kahler, Charlene M.</au><au>Sakellaris, Harry</au><au>Pearce, Mary</au><au>Bottomley, Stephen P.</au><au>Rossjohn, Jamie</au><au>Scanlon, Martin J.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-06-26</date><risdate>2009</risdate><volume>284</volume><issue>26</issue><spage>17835</spage><epage>17845</epage><pages>17835-17845</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the complex.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19389711</pmid><doi>10.1074/jbc.M109.011502</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-06, Vol.284 (26), p.17835-17845
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2719422
source MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Amino Acid Sequence
BACTERIA
Bacterial Proteins - chemistry
Bacterial Proteins - genetics
Bacterial Proteins - metabolism
Binding Sites
Catalysis
CRYSTAL STRUCTURE
Crystallography, X-Ray
CYSTEINE
DISULFIDES
Disulfides - metabolism
ENZYMES
ESCHERICHIA COLI
Escherichia coli - enzymology
Escherichia coli Proteins - chemistry
Escherichia coli Proteins - genetics
Escherichia coli Proteins - metabolism
FUNCTIONALS
Magnetic Resonance Spectroscopy
MATERIALS SCIENCE
MEMBRANE PROTEINS
Membrane Proteins - chemistry
Membrane Proteins - genetics
Membrane Proteins - metabolism
Models, Molecular
Molecular Sequence Data
NUCLEAR MAGNETIC RESONANCE
OXIDOREDUCTASES
Peptide Fragments - metabolism
PEPTIDES
Protein Conformation
Protein Disulfide-Isomerases - chemistry
Protein Disulfide-Isomerases - genetics
Protein Disulfide-Isomerases - metabolism
Protein Structure and Folding
PROTEINS
RESIDUES
Sequence Homology, Amino Acid
SPECIFICITY
Substrate Specificity
SUBSTRATES
TRANSIENTS
title The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structure%20of%20the%20Bacterial%20Oxidoreductase%20Enzyme%20DsbA%20in%20Complex%20with%20a%20Peptide%20Reveals%20a%20Basis%20for%20Substrate%20Specificity%20in%20the%20Catalytic%20Cycle%20of%20DsbA%20Enzymes&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Paxman,%20Jason%20J.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2009-06-26&rft.volume=284&rft.issue=26&rft.spage=17835&rft.epage=17845&rft.pages=17835-17845&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.011502&rft_dat=%3Cproquest_pubme%3E21098431%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21098431&rft_id=info:pmid/19389711&rft_els_id=S0021925819820665&rfr_iscdi=true