The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes
Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of u...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2009-06, Vol.284 (26), p.17835-17845 |
---|---|
Hauptverfasser: | , , , , , , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 17845 |
---|---|
container_issue | 26 |
container_start_page | 17835 |
container_title | The Journal of biological chemistry |
container_volume | 284 |
creator | Paxman, Jason J. Borg, Natalie A. Horne, James Thompson, Philip E. Chin, Yanni Sharma, Pooja Simpson, Jamie S. Wielens, Jerome Piek, Susannah Kahler, Charlene M. Sakellaris, Harry Pearce, Mary Bottomley, Stephen P. Rossjohn, Jamie Scanlon, Martin J. |
description | Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the complex. |
doi_str_mv | 10.1074/jbc.M109.011502 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2719422</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925819820665</els_id><sourcerecordid>21098431</sourcerecordid><originalsourceid>FETCH-LOGICAL-c552t-51f70b4486594b91c373c2e32b96a8c081455c4f59094368af40effdabc29c7d3</originalsourceid><addsrcrecordid>eNqFkktv1DAUhSMEoqWwZgcWQuxm6mcSbyq1Q3lIRUVMK7GzHOdm4iqJB9uZdvg9_FA8zYjHAuGNJd_P59xrnyx7TvCc4IIf31Rm_olgOceECEwfZIcEl2zGBPn6MDvEmJKZpKI8yJ6EcIPT4pI8zg6IZKUsCDnMfly1gJbRjyaOHpBrUEwHZ9pE8FZ36PLO1s5Dneo6ADofvm97QG9DdYrsgBauX3dwh25tbJFGn2EdbQ3oC2xAdyGdnOlgA2qcR8uxCtHrmNzWYGxjjY3bncbOb6Gj7rbRGrTYmu6-jXuLyS48zR41SQ-e7fej7Prd-dXiw-zi8v3HxenFzAhB40yQpsAV52UuJK8kMaxghgKjlcx1aXBJuBCGN0JiyVle6oZjaJpaV4ZKU9TsKDuZdNdj1UNtYEgdd2rtba_9Vjlt1d-VwbZq5TaKFkRySpPAq0nAhWhVSCOCaY0bBjBREYxzwmSC3uxdvPs2Qoiqt8FA1-kB3BhUXnAsirL8L0jTx5eckQQeT6DxLgQPza-WCVa7nKiUE7XLiZpykm68-HPS3_w-GAl4PQGtXbW31oOqrDMt9IqWXNFckaJkImEvJ6zRTumVt0FdLykmDJOc87woEiEnAtLHbSz43bPAYKBOoulVamf_2eVPSU7jFA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21098431</pqid></control><display><type>article</type><title>The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes</title><source>MEDLINE</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Paxman, Jason J. ; Borg, Natalie A. ; Horne, James ; Thompson, Philip E. ; Chin, Yanni ; Sharma, Pooja ; Simpson, Jamie S. ; Wielens, Jerome ; Piek, Susannah ; Kahler, Charlene M. ; Sakellaris, Harry ; Pearce, Mary ; Bottomley, Stephen P. ; Rossjohn, Jamie ; Scanlon, Martin J.</creator><creatorcontrib>Paxman, Jason J. ; Borg, Natalie A. ; Horne, James ; Thompson, Philip E. ; Chin, Yanni ; Sharma, Pooja ; Simpson, Jamie S. ; Wielens, Jerome ; Piek, Susannah ; Kahler, Charlene M. ; Sakellaris, Harry ; Pearce, Mary ; Bottomley, Stephen P. ; Rossjohn, Jamie ; Scanlon, Martin J. ; Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><description>Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the complex.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M109.011502</identifier><identifier>PMID: 19389711</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>Amino Acid Sequence ; BACTERIA ; Bacterial Proteins - chemistry ; Bacterial Proteins - genetics ; Bacterial Proteins - metabolism ; Binding Sites ; Catalysis ; CRYSTAL STRUCTURE ; Crystallography, X-Ray ; CYSTEINE ; DISULFIDES ; Disulfides - metabolism ; ENZYMES ; ESCHERICHIA COLI ; Escherichia coli - enzymology ; Escherichia coli Proteins - chemistry ; Escherichia coli Proteins - genetics ; Escherichia coli Proteins - metabolism ; FUNCTIONALS ; Magnetic Resonance Spectroscopy ; MATERIALS SCIENCE ; MEMBRANE PROTEINS ; Membrane Proteins - chemistry ; Membrane Proteins - genetics ; Membrane Proteins - metabolism ; Models, Molecular ; Molecular Sequence Data ; NUCLEAR MAGNETIC RESONANCE ; OXIDOREDUCTASES ; Peptide Fragments - metabolism ; PEPTIDES ; Protein Conformation ; Protein Disulfide-Isomerases - chemistry ; Protein Disulfide-Isomerases - genetics ; Protein Disulfide-Isomerases - metabolism ; Protein Structure and Folding ; PROTEINS ; RESIDUES ; Sequence Homology, Amino Acid ; SPECIFICITY ; Substrate Specificity ; SUBSTRATES ; TRANSIENTS</subject><ispartof>The Journal of biological chemistry, 2009-06, Vol.284 (26), p.17835-17845</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2009 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c552t-51f70b4486594b91c373c2e32b96a8c081455c4f59094368af40effdabc29c7d3</citedby><cites>FETCH-LOGICAL-c552t-51f70b4486594b91c373c2e32b96a8c081455c4f59094368af40effdabc29c7d3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719422/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2719422/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19389711$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://www.osti.gov/biblio/1006139$$D View this record in Osti.gov$$Hfree_for_read</backlink></links><search><creatorcontrib>Paxman, Jason J.</creatorcontrib><creatorcontrib>Borg, Natalie A.</creatorcontrib><creatorcontrib>Horne, James</creatorcontrib><creatorcontrib>Thompson, Philip E.</creatorcontrib><creatorcontrib>Chin, Yanni</creatorcontrib><creatorcontrib>Sharma, Pooja</creatorcontrib><creatorcontrib>Simpson, Jamie S.</creatorcontrib><creatorcontrib>Wielens, Jerome</creatorcontrib><creatorcontrib>Piek, Susannah</creatorcontrib><creatorcontrib>Kahler, Charlene M.</creatorcontrib><creatorcontrib>Sakellaris, Harry</creatorcontrib><creatorcontrib>Pearce, Mary</creatorcontrib><creatorcontrib>Bottomley, Stephen P.</creatorcontrib><creatorcontrib>Rossjohn, Jamie</creatorcontrib><creatorcontrib>Scanlon, Martin J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><title>The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the complex.</description><subject>Amino Acid Sequence</subject><subject>BACTERIA</subject><subject>Bacterial Proteins - chemistry</subject><subject>Bacterial Proteins - genetics</subject><subject>Bacterial Proteins - metabolism</subject><subject>Binding Sites</subject><subject>Catalysis</subject><subject>CRYSTAL STRUCTURE</subject><subject>Crystallography, X-Ray</subject><subject>CYSTEINE</subject><subject>DISULFIDES</subject><subject>Disulfides - metabolism</subject><subject>ENZYMES</subject><subject>ESCHERICHIA COLI</subject><subject>Escherichia coli - enzymology</subject><subject>Escherichia coli Proteins - chemistry</subject><subject>Escherichia coli Proteins - genetics</subject><subject>Escherichia coli Proteins - metabolism</subject><subject>FUNCTIONALS</subject><subject>Magnetic Resonance Spectroscopy</subject><subject>MATERIALS SCIENCE</subject><subject>MEMBRANE PROTEINS</subject><subject>Membrane Proteins - chemistry</subject><subject>Membrane Proteins - genetics</subject><subject>Membrane Proteins - metabolism</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>NUCLEAR MAGNETIC RESONANCE</subject><subject>OXIDOREDUCTASES</subject><subject>Peptide Fragments - metabolism</subject><subject>PEPTIDES</subject><subject>Protein Conformation</subject><subject>Protein Disulfide-Isomerases - chemistry</subject><subject>Protein Disulfide-Isomerases - genetics</subject><subject>Protein Disulfide-Isomerases - metabolism</subject><subject>Protein Structure and Folding</subject><subject>PROTEINS</subject><subject>RESIDUES</subject><subject>Sequence Homology, Amino Acid</subject><subject>SPECIFICITY</subject><subject>Substrate Specificity</subject><subject>SUBSTRATES</subject><subject>TRANSIENTS</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkktv1DAUhSMEoqWwZgcWQuxm6mcSbyq1Q3lIRUVMK7GzHOdm4iqJB9uZdvg9_FA8zYjHAuGNJd_P59xrnyx7TvCc4IIf31Rm_olgOceECEwfZIcEl2zGBPn6MDvEmJKZpKI8yJ6EcIPT4pI8zg6IZKUsCDnMfly1gJbRjyaOHpBrUEwHZ9pE8FZ36PLO1s5Dneo6ADofvm97QG9DdYrsgBauX3dwh25tbJFGn2EdbQ3oC2xAdyGdnOlgA2qcR8uxCtHrmNzWYGxjjY3bncbOb6Gj7rbRGrTYmu6-jXuLyS48zR41SQ-e7fej7Prd-dXiw-zi8v3HxenFzAhB40yQpsAV52UuJK8kMaxghgKjlcx1aXBJuBCGN0JiyVle6oZjaJpaV4ZKU9TsKDuZdNdj1UNtYEgdd2rtba_9Vjlt1d-VwbZq5TaKFkRySpPAq0nAhWhVSCOCaY0bBjBREYxzwmSC3uxdvPs2Qoiqt8FA1-kB3BhUXnAsirL8L0jTx5eckQQeT6DxLgQPza-WCVa7nKiUE7XLiZpykm68-HPS3_w-GAl4PQGtXbW31oOqrDMt9IqWXNFckaJkImEvJ6zRTumVt0FdLykmDJOc87woEiEnAtLHbSz43bPAYKBOoulVamf_2eVPSU7jFA</recordid><startdate>20090626</startdate><enddate>20090626</enddate><creator>Paxman, Jason J.</creator><creator>Borg, Natalie A.</creator><creator>Horne, James</creator><creator>Thompson, Philip E.</creator><creator>Chin, Yanni</creator><creator>Sharma, Pooja</creator><creator>Simpson, Jamie S.</creator><creator>Wielens, Jerome</creator><creator>Piek, Susannah</creator><creator>Kahler, Charlene M.</creator><creator>Sakellaris, Harry</creator><creator>Pearce, Mary</creator><creator>Bottomley, Stephen P.</creator><creator>Rossjohn, Jamie</creator><creator>Scanlon, Martin J.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>P64</scope><scope>7X8</scope><scope>OTOTI</scope><scope>5PM</scope></search><sort><creationdate>20090626</creationdate><title>The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes</title><author>Paxman, Jason J. ; Borg, Natalie A. ; Horne, James ; Thompson, Philip E. ; Chin, Yanni ; Sharma, Pooja ; Simpson, Jamie S. ; Wielens, Jerome ; Piek, Susannah ; Kahler, Charlene M. ; Sakellaris, Harry ; Pearce, Mary ; Bottomley, Stephen P. ; Rossjohn, Jamie ; Scanlon, Martin J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c552t-51f70b4486594b91c373c2e32b96a8c081455c4f59094368af40effdabc29c7d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Amino Acid Sequence</topic><topic>BACTERIA</topic><topic>Bacterial Proteins - chemistry</topic><topic>Bacterial Proteins - genetics</topic><topic>Bacterial Proteins - metabolism</topic><topic>Binding Sites</topic><topic>Catalysis</topic><topic>CRYSTAL STRUCTURE</topic><topic>Crystallography, X-Ray</topic><topic>CYSTEINE</topic><topic>DISULFIDES</topic><topic>Disulfides - metabolism</topic><topic>ENZYMES</topic><topic>ESCHERICHIA COLI</topic><topic>Escherichia coli - enzymology</topic><topic>Escherichia coli Proteins - chemistry</topic><topic>Escherichia coli Proteins - genetics</topic><topic>Escherichia coli Proteins - metabolism</topic><topic>FUNCTIONALS</topic><topic>Magnetic Resonance Spectroscopy</topic><topic>MATERIALS SCIENCE</topic><topic>MEMBRANE PROTEINS</topic><topic>Membrane Proteins - chemistry</topic><topic>Membrane Proteins - genetics</topic><topic>Membrane Proteins - metabolism</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>NUCLEAR MAGNETIC RESONANCE</topic><topic>OXIDOREDUCTASES</topic><topic>Peptide Fragments - metabolism</topic><topic>PEPTIDES</topic><topic>Protein Conformation</topic><topic>Protein Disulfide-Isomerases - chemistry</topic><topic>Protein Disulfide-Isomerases - genetics</topic><topic>Protein Disulfide-Isomerases - metabolism</topic><topic>Protein Structure and Folding</topic><topic>PROTEINS</topic><topic>RESIDUES</topic><topic>Sequence Homology, Amino Acid</topic><topic>SPECIFICITY</topic><topic>Substrate Specificity</topic><topic>SUBSTRATES</topic><topic>TRANSIENTS</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Paxman, Jason J.</creatorcontrib><creatorcontrib>Borg, Natalie A.</creatorcontrib><creatorcontrib>Horne, James</creatorcontrib><creatorcontrib>Thompson, Philip E.</creatorcontrib><creatorcontrib>Chin, Yanni</creatorcontrib><creatorcontrib>Sharma, Pooja</creatorcontrib><creatorcontrib>Simpson, Jamie S.</creatorcontrib><creatorcontrib>Wielens, Jerome</creatorcontrib><creatorcontrib>Piek, Susannah</creatorcontrib><creatorcontrib>Kahler, Charlene M.</creatorcontrib><creatorcontrib>Sakellaris, Harry</creatorcontrib><creatorcontrib>Pearce, Mary</creatorcontrib><creatorcontrib>Bottomley, Stephen P.</creatorcontrib><creatorcontrib>Rossjohn, Jamie</creatorcontrib><creatorcontrib>Scanlon, Martin J.</creatorcontrib><creatorcontrib>Argonne National Lab. (ANL), Argonne, IL (United States)</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>OSTI.GOV</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Paxman, Jason J.</au><au>Borg, Natalie A.</au><au>Horne, James</au><au>Thompson, Philip E.</au><au>Chin, Yanni</au><au>Sharma, Pooja</au><au>Simpson, Jamie S.</au><au>Wielens, Jerome</au><au>Piek, Susannah</au><au>Kahler, Charlene M.</au><au>Sakellaris, Harry</au><au>Pearce, Mary</au><au>Bottomley, Stephen P.</au><au>Rossjohn, Jamie</au><au>Scanlon, Martin J.</au><aucorp>Argonne National Lab. (ANL), Argonne, IL (United States)</aucorp><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-06-26</date><risdate>2009</risdate><volume>284</volume><issue>26</issue><spage>17835</spage><epage>17845</epage><pages>17835-17845</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Oxidative protein folding in Gram-negative bacteria results in the formation of disulfide bonds between pairs of cysteine residues. This is a multistep process in which the dithiol-disulfide oxidoreductase enzyme, DsbA, plays a central role. The structure of DsbA comprises an all helical domain of unknown function and a thioredoxin domain, where active site cysteines shuttle between an oxidized, substrate-bound, reduced form and a DsbB-bound form, where DsbB is a membrane protein that reoxidizes DsbA. Most DsbA enzymes interact with a wide variety of reduced substrates and show little specificity. However, a number of DsbA enzymes have now been identified that have narrow substrate repertoires and appear to interact specifically with a smaller number of substrates. The transient nature of the DsbA-substrate complex has hampered our understanding of the factors that govern the interaction of DsbA enzymes with their substrates. Here we report the crystal structure of a complex between Escherichia coli DsbA and a peptide with a sequence derived from a substrate. The binding site identified in the DsbA-peptide complex was distinct from that observed for DsbB in the DsbA-DsbB complex. The structure revealed details of the DsbA-peptide interaction and suggested a mechanism by which DsbA can simultaneously show broad specificity for substrates yet exhibit specificity for DsbB. This mode of binding was supported by solution nuclear magnetic resonance data as well as functional data, which demonstrated that the substrate specificity of DsbA could be modified via changes at the binding interface identified in the structure of the complex.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19389711</pmid><doi>10.1074/jbc.M109.011502</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2009-06, Vol.284 (26), p.17835-17845 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2719422 |
source | MEDLINE; EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection |
subjects | Amino Acid Sequence BACTERIA Bacterial Proteins - chemistry Bacterial Proteins - genetics Bacterial Proteins - metabolism Binding Sites Catalysis CRYSTAL STRUCTURE Crystallography, X-Ray CYSTEINE DISULFIDES Disulfides - metabolism ENZYMES ESCHERICHIA COLI Escherichia coli - enzymology Escherichia coli Proteins - chemistry Escherichia coli Proteins - genetics Escherichia coli Proteins - metabolism FUNCTIONALS Magnetic Resonance Spectroscopy MATERIALS SCIENCE MEMBRANE PROTEINS Membrane Proteins - chemistry Membrane Proteins - genetics Membrane Proteins - metabolism Models, Molecular Molecular Sequence Data NUCLEAR MAGNETIC RESONANCE OXIDOREDUCTASES Peptide Fragments - metabolism PEPTIDES Protein Conformation Protein Disulfide-Isomerases - chemistry Protein Disulfide-Isomerases - genetics Protein Disulfide-Isomerases - metabolism Protein Structure and Folding PROTEINS RESIDUES Sequence Homology, Amino Acid SPECIFICITY Substrate Specificity SUBSTRATES TRANSIENTS |
title | The Structure of the Bacterial Oxidoreductase Enzyme DsbA in Complex with a Peptide Reveals a Basis for Substrate Specificity in the Catalytic Cycle of DsbA Enzymes |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-05T07%3A31%3A39IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Structure%20of%20the%20Bacterial%20Oxidoreductase%20Enzyme%20DsbA%20in%20Complex%20with%20a%20Peptide%20Reveals%20a%20Basis%20for%20Substrate%20Specificity%20in%20the%20Catalytic%20Cycle%20of%20DsbA%20Enzymes&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Paxman,%20Jason%20J.&rft.aucorp=Argonne%20National%20Lab.%20(ANL),%20Argonne,%20IL%20(United%20States)&rft.date=2009-06-26&rft.volume=284&rft.issue=26&rft.spage=17835&rft.epage=17845&rft.pages=17835-17845&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M109.011502&rft_dat=%3Cproquest_pubme%3E21098431%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21098431&rft_id=info:pmid/19389711&rft_els_id=S0021925819820665&rfr_iscdi=true |