Identifying functional modules in protein–protein interaction networks: an integrated exact approach

Motivation: With the exponential growth of expression and protein–protein interaction (PPI) data, the frontier of research in systems biology shifts more and more to the integrated analysis of these large datasets. Of particular interest is the identification of functional modules in PPI networks, s...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Bioinformatics 2008-07, Vol.24 (13), p.i223-i231
Hauptverfasser: Dittrich, Marcus T., Klau, Gunnar W., Rosenwald, Andreas, Dandekar, Thomas, Müller, Tobias
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page i231
container_issue 13
container_start_page i223
container_title Bioinformatics
container_volume 24
creator Dittrich, Marcus T.
Klau, Gunnar W.
Rosenwald, Andreas
Dandekar, Thomas
Müller, Tobias
description Motivation: With the exponential growth of expression and protein–protein interaction (PPI) data, the frontier of research in systems biology shifts more and more to the integrated analysis of these large datasets. Of particular interest is the identification of functional modules in PPI networks, sharing common cellular function beyond the scope of classical pathways, by means of detecting differentially expressed regions in PPI networks. This requires on the one hand an adequate scoring of the nodes in the network to be identified and on the other hand the availability of an effective algorithm to find the maximally scoring network regions. Various heuristic approaches have been proposed in the literature. Results: Here we present the first exact solution for this problem, which is based on integer-linear programming and its connection to the well-known prize-collecting Steiner tree problem from Operations Research. Despite the NP-hardness of the underlying combinatorial problem, our method typically computes provably optimal subnetworks in large PPI networks in a few minutes. An essential ingredient of our approach is a scoring function defined on network nodes. We propose a new additive score with two desirable properties: (i) it is scalable by a statistically interpretable parameter and (ii) it allows a smooth integration of data from various sources. We apply our method to a well-established lymphoma microarray dataset in combination with associated survival data and the large interaction network of HPRD to identify functional modules by computing optimal-scoring subnetworks. In particular, we find a functional interaction module associated with proliferation over-expressed in the aggressive ABC subtype as well as modules derived from non-malignant by-stander cells. Availability: Our software is available freely for non-commercial purposes at http://www.planet-lisa.net. Contact: tobias.mueller@biozentrum.uni-wuerzburg.de
doi_str_mv 10.1093/bioinformatics/btn161
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2718639</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btn161</oup_id><sourcerecordid>1504932131</sourcerecordid><originalsourceid>FETCH-LOGICAL-c612t-d245bc41ebc92921b94f4192a02dd14c4250fbb159cd1d33caa933d87565a7103</originalsourceid><addsrcrecordid>eNqNkc1u1TAQhSMEoqXwCKCIBbtQj_8Ss0Cqys-tVIlNkdDdWI7t3LpN7IvtQLvjHXhDngSXXBXKBlYeeb5z7JlTVU8BvQQkyGHvgvNDiJPKTqfDPnvgcK_aB8pRgxET90tNeNvQDpG96lFKFwgxoJQ-rPagYx1voduvhhNjfXbDtfObepi9zi54NdZTMPNoU-18vY0hW-d_fPu-q8pltlH9Qmtv89cQL9OrWi2NTVTZmtpeFaBW26JR-vxx9WBQY7JPdudB9fHd27PjVXP64f3J8dFpozng3BhMWa8p2F4LLDD0gg4UBFYIGwNUU8zQ0PfAhDZgCNFKCUJM1zLOVAuIHFSvF9_t3E_W6DJbVKPcRjepeC2DcvJux7tzuQlfJC7b4EQUgxc7gxg-zzZlObmk7Tgqb8OcJBeYd0T8GyQEqGgFLuDzv8CLMMey4yRB3LwJgheILZCOIaVoh9svA5I3ecu7ecsl76J79ue8v1W7gAuAFiDM2__2bBaJS9le3YpUvJS8JS2Tq09ruV6RtVi_Wckz8hPLetEE</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198639196</pqid></control><display><type>article</type><title>Identifying functional modules in protein–protein interaction networks: an integrated exact approach</title><source>MEDLINE</source><source>Access via Oxford University Press (Open Access Collection)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Dittrich, Marcus T. ; Klau, Gunnar W. ; Rosenwald, Andreas ; Dandekar, Thomas ; Müller, Tobias</creator><creatorcontrib>Dittrich, Marcus T. ; Klau, Gunnar W. ; Rosenwald, Andreas ; Dandekar, Thomas ; Müller, Tobias</creatorcontrib><description>Motivation: With the exponential growth of expression and protein–protein interaction (PPI) data, the frontier of research in systems biology shifts more and more to the integrated analysis of these large datasets. Of particular interest is the identification of functional modules in PPI networks, sharing common cellular function beyond the scope of classical pathways, by means of detecting differentially expressed regions in PPI networks. This requires on the one hand an adequate scoring of the nodes in the network to be identified and on the other hand the availability of an effective algorithm to find the maximally scoring network regions. Various heuristic approaches have been proposed in the literature. Results: Here we present the first exact solution for this problem, which is based on integer-linear programming and its connection to the well-known prize-collecting Steiner tree problem from Operations Research. Despite the NP-hardness of the underlying combinatorial problem, our method typically computes provably optimal subnetworks in large PPI networks in a few minutes. An essential ingredient of our approach is a scoring function defined on network nodes. We propose a new additive score with two desirable properties: (i) it is scalable by a statistically interpretable parameter and (ii) it allows a smooth integration of data from various sources. We apply our method to a well-established lymphoma microarray dataset in combination with associated survival data and the large interaction network of HPRD to identify functional modules by computing optimal-scoring subnetworks. In particular, we find a functional interaction module associated with proliferation over-expressed in the aggressive ABC subtype as well as modules derived from non-malignant by-stander cells. Availability: Our software is available freely for non-commercial purposes at http://www.planet-lisa.net. Contact: tobias.mueller@biozentrum.uni-wuerzburg.de</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btn161</identifier><identifier>PMID: 18586718</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>Algorithms ; Gene Expression Profiling - methods ; Humans ; Lymphoma - metabolism ; Protein Interaction Mapping - methods ; Proteome - metabolism ; Signal Transduction ; Systems Integration</subject><ispartof>Bioinformatics, 2008-07, Vol.24 (13), p.i223-i231</ispartof><rights>2008 The Author(s) 2008</rights><rights>2008 The Author(s)</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c612t-d245bc41ebc92921b94f4192a02dd14c4250fbb159cd1d33caa933d87565a7103</citedby><cites>FETCH-LOGICAL-c612t-d245bc41ebc92921b94f4192a02dd14c4250fbb159cd1d33caa933d87565a7103</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718639/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718639/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,1604,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18586718$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Dittrich, Marcus T.</creatorcontrib><creatorcontrib>Klau, Gunnar W.</creatorcontrib><creatorcontrib>Rosenwald, Andreas</creatorcontrib><creatorcontrib>Dandekar, Thomas</creatorcontrib><creatorcontrib>Müller, Tobias</creatorcontrib><title>Identifying functional modules in protein–protein interaction networks: an integrated exact approach</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: With the exponential growth of expression and protein–protein interaction (PPI) data, the frontier of research in systems biology shifts more and more to the integrated analysis of these large datasets. Of particular interest is the identification of functional modules in PPI networks, sharing common cellular function beyond the scope of classical pathways, by means of detecting differentially expressed regions in PPI networks. This requires on the one hand an adequate scoring of the nodes in the network to be identified and on the other hand the availability of an effective algorithm to find the maximally scoring network regions. Various heuristic approaches have been proposed in the literature. Results: Here we present the first exact solution for this problem, which is based on integer-linear programming and its connection to the well-known prize-collecting Steiner tree problem from Operations Research. Despite the NP-hardness of the underlying combinatorial problem, our method typically computes provably optimal subnetworks in large PPI networks in a few minutes. An essential ingredient of our approach is a scoring function defined on network nodes. We propose a new additive score with two desirable properties: (i) it is scalable by a statistically interpretable parameter and (ii) it allows a smooth integration of data from various sources. We apply our method to a well-established lymphoma microarray dataset in combination with associated survival data and the large interaction network of HPRD to identify functional modules by computing optimal-scoring subnetworks. In particular, we find a functional interaction module associated with proliferation over-expressed in the aggressive ABC subtype as well as modules derived from non-malignant by-stander cells. Availability: Our software is available freely for non-commercial purposes at http://www.planet-lisa.net. Contact: tobias.mueller@biozentrum.uni-wuerzburg.de</description><subject>Algorithms</subject><subject>Gene Expression Profiling - methods</subject><subject>Humans</subject><subject>Lymphoma - metabolism</subject><subject>Protein Interaction Mapping - methods</subject><subject>Proteome - metabolism</subject><subject>Signal Transduction</subject><subject>Systems Integration</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>TOX</sourceid><sourceid>EIF</sourceid><recordid>eNqNkc1u1TAQhSMEoqXwCKCIBbtQj_8Ss0Cqys-tVIlNkdDdWI7t3LpN7IvtQLvjHXhDngSXXBXKBlYeeb5z7JlTVU8BvQQkyGHvgvNDiJPKTqfDPnvgcK_aB8pRgxET90tNeNvQDpG96lFKFwgxoJQ-rPagYx1voduvhhNjfXbDtfObepi9zi54NdZTMPNoU-18vY0hW-d_fPu-q8pltlH9Qmtv89cQL9OrWi2NTVTZmtpeFaBW26JR-vxx9WBQY7JPdudB9fHd27PjVXP64f3J8dFpozng3BhMWa8p2F4LLDD0gg4UBFYIGwNUU8zQ0PfAhDZgCNFKCUJM1zLOVAuIHFSvF9_t3E_W6DJbVKPcRjepeC2DcvJux7tzuQlfJC7b4EQUgxc7gxg-zzZlObmk7Tgqb8OcJBeYd0T8GyQEqGgFLuDzv8CLMMey4yRB3LwJgheILZCOIaVoh9svA5I3ecu7ecsl76J79ue8v1W7gAuAFiDM2__2bBaJS9le3YpUvJS8JS2Tq09ruV6RtVi_Wckz8hPLetEE</recordid><startdate>20080701</startdate><enddate>20080701</enddate><creator>Dittrich, Marcus T.</creator><creator>Klau, Gunnar W.</creator><creator>Rosenwald, Andreas</creator><creator>Dandekar, Thomas</creator><creator>Müller, Tobias</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>TOX</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20080701</creationdate><title>Identifying functional modules in protein–protein interaction networks: an integrated exact approach</title><author>Dittrich, Marcus T. ; Klau, Gunnar W. ; Rosenwald, Andreas ; Dandekar, Thomas ; Müller, Tobias</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c612t-d245bc41ebc92921b94f4192a02dd14c4250fbb159cd1d33caa933d87565a7103</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Gene Expression Profiling - methods</topic><topic>Humans</topic><topic>Lymphoma - metabolism</topic><topic>Protein Interaction Mapping - methods</topic><topic>Proteome - metabolism</topic><topic>Signal Transduction</topic><topic>Systems Integration</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Dittrich, Marcus T.</creatorcontrib><creatorcontrib>Klau, Gunnar W.</creatorcontrib><creatorcontrib>Rosenwald, Andreas</creatorcontrib><creatorcontrib>Dandekar, Thomas</creatorcontrib><creatorcontrib>Müller, Tobias</creatorcontrib><collection>Istex</collection><collection>Access via Oxford University Press (Open Access Collection)</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Dittrich, Marcus T.</au><au>Klau, Gunnar W.</au><au>Rosenwald, Andreas</au><au>Dandekar, Thomas</au><au>Müller, Tobias</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identifying functional modules in protein–protein interaction networks: an integrated exact approach</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2008-07-01</date><risdate>2008</risdate><volume>24</volume><issue>13</issue><spage>i223</spage><epage>i231</epage><pages>i223-i231</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: With the exponential growth of expression and protein–protein interaction (PPI) data, the frontier of research in systems biology shifts more and more to the integrated analysis of these large datasets. Of particular interest is the identification of functional modules in PPI networks, sharing common cellular function beyond the scope of classical pathways, by means of detecting differentially expressed regions in PPI networks. This requires on the one hand an adequate scoring of the nodes in the network to be identified and on the other hand the availability of an effective algorithm to find the maximally scoring network regions. Various heuristic approaches have been proposed in the literature. Results: Here we present the first exact solution for this problem, which is based on integer-linear programming and its connection to the well-known prize-collecting Steiner tree problem from Operations Research. Despite the NP-hardness of the underlying combinatorial problem, our method typically computes provably optimal subnetworks in large PPI networks in a few minutes. An essential ingredient of our approach is a scoring function defined on network nodes. We propose a new additive score with two desirable properties: (i) it is scalable by a statistically interpretable parameter and (ii) it allows a smooth integration of data from various sources. We apply our method to a well-established lymphoma microarray dataset in combination with associated survival data and the large interaction network of HPRD to identify functional modules by computing optimal-scoring subnetworks. In particular, we find a functional interaction module associated with proliferation over-expressed in the aggressive ABC subtype as well as modules derived from non-malignant by-stander cells. Availability: Our software is available freely for non-commercial purposes at http://www.planet-lisa.net. Contact: tobias.mueller@biozentrum.uni-wuerzburg.de</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>18586718</pmid><doi>10.1093/bioinformatics/btn161</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2008-07, Vol.24 (13), p.i223-i231
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2718639
source MEDLINE; Access via Oxford University Press (Open Access Collection); EZB-FREE-00999 freely available EZB journals; PubMed Central; Alma/SFX Local Collection
subjects Algorithms
Gene Expression Profiling - methods
Humans
Lymphoma - metabolism
Protein Interaction Mapping - methods
Proteome - metabolism
Signal Transduction
Systems Integration
title Identifying functional modules in protein–protein interaction networks: an integrated exact approach
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-20T02%3A28%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identifying%20functional%20modules%20in%20protein%E2%80%93protein%20interaction%20networks:%20an%20integrated%20exact%20approach&rft.jtitle=Bioinformatics&rft.au=Dittrich,%20Marcus%20T.&rft.date=2008-07-01&rft.volume=24&rft.issue=13&rft.spage=i223&rft.epage=i231&rft.pages=i223-i231&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btn161&rft_dat=%3Cproquest_pubme%3E1504932131%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=198639196&rft_id=info:pmid/18586718&rft_oup_id=10.1093/bioinformatics/btn161&rfr_iscdi=true