Structure and function of a complex between chorismate mutase and DAHP synthase: efficiency boost for the junior partner
Chorismate mutase catalyzes a key step in the shikimate biosynthetic pathway towards phenylalanine and tyrosine. Curiously, the intracellular chorismate mutase of Mycobacterium tuberculosis (MtCM; Rv0948c) has poor activity and lacks prominent active‐site residues. However, its catalytic efficiency...
Gespeichert in:
Veröffentlicht in: | The EMBO journal 2009-07, Vol.28 (14), p.2128-2142 |
---|---|
Hauptverfasser: | , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext bestellen |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 2142 |
---|---|
container_issue | 14 |
container_start_page | 2128 |
container_title | The EMBO journal |
container_volume | 28 |
creator | Sasso, Severin Ökvist, Mats Roderer, Kathrin Gamper, Marianne Codoni, Giosiana Krengel, Ute Kast, Peter |
description | Chorismate mutase catalyzes a key step in the shikimate biosynthetic pathway towards phenylalanine and tyrosine. Curiously, the intracellular chorismate mutase of
Mycobacterium tuberculosis
(MtCM; Rv0948c) has poor activity and lacks prominent active‐site residues. However, its catalytic efficiency increases >100‐fold on addition of DAHP synthase (MtDS; Rv2178c), another shikimate‐pathway enzyme. The 2.35 Å crystal structure of the MtCM–MtDS complex bound to a transition‐state analogue shows a central core formed by four MtDS subunits sandwiched between two MtCM dimers. Structural comparisons imply catalytic activation to be a consequence of the repositioning of MtCM active‐site residues on binding to MtDS. The mutagenesis of the C‐terminal extrusion of MtCM establishes conserved residues as part of the activation machinery. The chorismate‐mutase activity of the complex, but not of MtCM alone, is inhibited synergistically by phenylalanine and tyrosine. The complex formation thus endows the shikimate pathway of
M. tuberculosis
with an important regulatory feature. Experimental evidence suggests that such non‐covalent enzyme complexes comprising an AroQ
δ
subclass chorismate mutase like MtCM are abundant in the bacterial order
Actinomycetales
. |
doi_str_mv | 10.1038/emboj.2009.165 |
format | Article |
fullrecord | <record><control><sourceid>proquest_C6C</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2718287</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>20944006</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5725-d6a84394b054540324b044f69a1213c3515c3e3cd2dc2de09ab207efc30701253</originalsourceid><addsrcrecordid>eNqFkUtv1DAUhSMEoqWwZYksFuwy9TMPFkjtUFpQC5VaYGk5zk3HQ2IPtkNn_j0eMioFCbHytf2d43t9suw5wTOCWXUIQ-OWM4pxPSOFeJDtE17gnOJSPMz2MS1IzklV72VPQlhijEVVksfZHqmFKOoS72frq-hHHUcPSNkWdaPV0TiLXIcU0m5Y9bBGDcRbAIv0wnkTBhUBDWNUYdK8PTq7RGFj4yKdvEbQdUYbsHqDGudCRJ3zKC4ALUdrUrlSPlrwT7NHneoDPNutB9nndyfX87P8_NPp-_nRea5FSUXeFqrirOYNFlxwzGiqOO-KWhFKmGaCCM2A6Za2mraAa9Wk4aHTDJeYUMEOsjeT72psBmg12OhVL1feDMpvpFNG_nljzULeuB-SlqSiVZkMXu0MvPs-QohyMEFD3ysLbgyS4ppzjIsEvvwLXLrR2zScTP9NC1HRLTSbIO1dCB66u04IlttE5a9E5TZRmRJNghf3-_-N7yJMQDkBt6aHzX_s5MnF8YftZrI-nJQhiewN-HsN_6uZfFKYEGF995by32RRslLIrx9PJWfzy4trfiW_sJ9Ihc5j</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195265826</pqid></control><display><type>article</type><title>Structure and function of a complex between chorismate mutase and DAHP synthase: efficiency boost for the junior partner</title><source>Springer Nature OA Free Journals</source><creator>Sasso, Severin ; Ökvist, Mats ; Roderer, Kathrin ; Gamper, Marianne ; Codoni, Giosiana ; Krengel, Ute ; Kast, Peter</creator><creatorcontrib>Sasso, Severin ; Ökvist, Mats ; Roderer, Kathrin ; Gamper, Marianne ; Codoni, Giosiana ; Krengel, Ute ; Kast, Peter</creatorcontrib><description>Chorismate mutase catalyzes a key step in the shikimate biosynthetic pathway towards phenylalanine and tyrosine. Curiously, the intracellular chorismate mutase of
Mycobacterium tuberculosis
(MtCM; Rv0948c) has poor activity and lacks prominent active‐site residues. However, its catalytic efficiency increases >100‐fold on addition of DAHP synthase (MtDS; Rv2178c), another shikimate‐pathway enzyme. The 2.35 Å crystal structure of the MtCM–MtDS complex bound to a transition‐state analogue shows a central core formed by four MtDS subunits sandwiched between two MtCM dimers. Structural comparisons imply catalytic activation to be a consequence of the repositioning of MtCM active‐site residues on binding to MtDS. The mutagenesis of the C‐terminal extrusion of MtCM establishes conserved residues as part of the activation machinery. The chorismate‐mutase activity of the complex, but not of MtCM alone, is inhibited synergistically by phenylalanine and tyrosine. The complex formation thus endows the shikimate pathway of
M. tuberculosis
with an important regulatory feature. Experimental evidence suggests that such non‐covalent enzyme complexes comprising an AroQ
δ
subclass chorismate mutase like MtCM are abundant in the bacterial order
Actinomycetales
.</description><identifier>ISSN: 0261-4189</identifier><identifier>EISSN: 1460-2075</identifier><identifier>DOI: 10.1038/emboj.2009.165</identifier><identifier>PMID: 19556970</identifier><identifier>CODEN: EMJODG</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>3-Deoxy-7-Phosphoheptulonate Synthase - chemistry ; 3-Deoxy-7-Phosphoheptulonate Synthase - metabolism ; Actinomycetales ; Amino Acid Sequence ; Biochemistry ; Catalysis ; Catalytic Domain ; Cellular biology ; Chorismate Mutase - chemistry ; Chorismate Mutase - genetics ; Chorismate Mutase - metabolism ; Cloning, Molecular ; Corynebacterium glutamicum - enzymology ; Crystal structure ; Crystallography, X-Ray ; EMBO23 ; EMBO40 ; Enzyme Activation ; enzyme catalysis ; Enzymes ; Malates - chemistry ; Models, Molecular ; Molecular biology ; Molecular Sequence Data ; multi-enzyme complex ; Mycobacterium tuberculosis ; Mycobacterium tuberculosis - chemistry ; Mycobacterium tuberculosis - enzymology ; Mycobacterium tuberculosis - metabolism ; Mycobacterium tuberculosis Rv0948c ; Phenylalanine - metabolism ; Residues ; Sequence Alignment ; shikimate pathway ; Shikimic Acid - metabolism ; Tuberculosis ; Tyrosine - metabolism ; X-ray crystal structure</subject><ispartof>The EMBO journal, 2009-07, Vol.28 (14), p.2128-2142</ispartof><rights>European Molecular Biology Organization 2009</rights><rights>Copyright © 2009 European Molecular Biology Organization</rights><rights>Copyright Nature Publishing Group Jul 22, 2009</rights><rights>Copyright © 2009, European Molecular Biology Organization 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5725-d6a84394b054540324b044f69a1213c3515c3e3cd2dc2de09ab207efc30701253</citedby><cites>FETCH-LOGICAL-c5725-d6a84394b054540324b044f69a1213c3515c3e3cd2dc2de09ab207efc30701253</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718287/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718287/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,1411,1427,27901,27902,41096,42165,45550,45551,46384,46808,51551,53766,53768</link.rule.ids><linktorsrc>$$Uhttps://doi.org/10.1038/emboj.2009.165$$EView_record_in_Springer_Nature$$FView_record_in_$$GSpringer_Nature</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19556970$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sasso, Severin</creatorcontrib><creatorcontrib>Ökvist, Mats</creatorcontrib><creatorcontrib>Roderer, Kathrin</creatorcontrib><creatorcontrib>Gamper, Marianne</creatorcontrib><creatorcontrib>Codoni, Giosiana</creatorcontrib><creatorcontrib>Krengel, Ute</creatorcontrib><creatorcontrib>Kast, Peter</creatorcontrib><title>Structure and function of a complex between chorismate mutase and DAHP synthase: efficiency boost for the junior partner</title><title>The EMBO journal</title><addtitle>EMBO J</addtitle><addtitle>EMBO J</addtitle><description>Chorismate mutase catalyzes a key step in the shikimate biosynthetic pathway towards phenylalanine and tyrosine. Curiously, the intracellular chorismate mutase of
Mycobacterium tuberculosis
(MtCM; Rv0948c) has poor activity and lacks prominent active‐site residues. However, its catalytic efficiency increases >100‐fold on addition of DAHP synthase (MtDS; Rv2178c), another shikimate‐pathway enzyme. The 2.35 Å crystal structure of the MtCM–MtDS complex bound to a transition‐state analogue shows a central core formed by four MtDS subunits sandwiched between two MtCM dimers. Structural comparisons imply catalytic activation to be a consequence of the repositioning of MtCM active‐site residues on binding to MtDS. The mutagenesis of the C‐terminal extrusion of MtCM establishes conserved residues as part of the activation machinery. The chorismate‐mutase activity of the complex, but not of MtCM alone, is inhibited synergistically by phenylalanine and tyrosine. The complex formation thus endows the shikimate pathway of
M. tuberculosis
with an important regulatory feature. Experimental evidence suggests that such non‐covalent enzyme complexes comprising an AroQ
δ
subclass chorismate mutase like MtCM are abundant in the bacterial order
Actinomycetales
.</description><subject>3-Deoxy-7-Phosphoheptulonate Synthase - chemistry</subject><subject>3-Deoxy-7-Phosphoheptulonate Synthase - metabolism</subject><subject>Actinomycetales</subject><subject>Amino Acid Sequence</subject><subject>Biochemistry</subject><subject>Catalysis</subject><subject>Catalytic Domain</subject><subject>Cellular biology</subject><subject>Chorismate Mutase - chemistry</subject><subject>Chorismate Mutase - genetics</subject><subject>Chorismate Mutase - metabolism</subject><subject>Cloning, Molecular</subject><subject>Corynebacterium glutamicum - enzymology</subject><subject>Crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>EMBO23</subject><subject>EMBO40</subject><subject>Enzyme Activation</subject><subject>enzyme catalysis</subject><subject>Enzymes</subject><subject>Malates - chemistry</subject><subject>Models, Molecular</subject><subject>Molecular biology</subject><subject>Molecular Sequence Data</subject><subject>multi-enzyme complex</subject><subject>Mycobacterium tuberculosis</subject><subject>Mycobacterium tuberculosis - chemistry</subject><subject>Mycobacterium tuberculosis - enzymology</subject><subject>Mycobacterium tuberculosis - metabolism</subject><subject>Mycobacterium tuberculosis Rv0948c</subject><subject>Phenylalanine - metabolism</subject><subject>Residues</subject><subject>Sequence Alignment</subject><subject>shikimate pathway</subject><subject>Shikimic Acid - metabolism</subject><subject>Tuberculosis</subject><subject>Tyrosine - metabolism</subject><subject>X-ray crystal structure</subject><issn>0261-4189</issn><issn>1460-2075</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>8G5</sourceid><sourceid>BENPR</sourceid><sourceid>GUQSH</sourceid><sourceid>M2O</sourceid><recordid>eNqFkUtv1DAUhSMEoqWwZYksFuwy9TMPFkjtUFpQC5VaYGk5zk3HQ2IPtkNn_j0eMioFCbHytf2d43t9suw5wTOCWXUIQ-OWM4pxPSOFeJDtE17gnOJSPMz2MS1IzklV72VPQlhijEVVksfZHqmFKOoS72frq-hHHUcPSNkWdaPV0TiLXIcU0m5Y9bBGDcRbAIv0wnkTBhUBDWNUYdK8PTq7RGFj4yKdvEbQdUYbsHqDGudCRJ3zKC4ALUdrUrlSPlrwT7NHneoDPNutB9nndyfX87P8_NPp-_nRea5FSUXeFqrirOYNFlxwzGiqOO-KWhFKmGaCCM2A6Za2mraAa9Wk4aHTDJeYUMEOsjeT72psBmg12OhVL1feDMpvpFNG_nljzULeuB-SlqSiVZkMXu0MvPs-QohyMEFD3ysLbgyS4ppzjIsEvvwLXLrR2zScTP9NC1HRLTSbIO1dCB66u04IlttE5a9E5TZRmRJNghf3-_-N7yJMQDkBt6aHzX_s5MnF8YftZrI-nJQhiewN-HsN_6uZfFKYEGF995by32RRslLIrx9PJWfzy4trfiW_sJ9Ihc5j</recordid><startdate>20090722</startdate><enddate>20090722</enddate><creator>Sasso, Severin</creator><creator>Ökvist, Mats</creator><creator>Roderer, Kathrin</creator><creator>Gamper, Marianne</creator><creator>Codoni, Giosiana</creator><creator>Krengel, Ute</creator><creator>Kast, Peter</creator><general>John Wiley & Sons, Ltd</general><general>Nature Publishing Group UK</general><general>Springer Nature B.V</general><general>Nature Publishing Group</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QG</scope><scope>7QL</scope><scope>7QP</scope><scope>7T5</scope><scope>7TK</scope><scope>7TM</scope><scope>7TO</scope><scope>7U9</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8C1</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>BKSAR</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2O</scope><scope>M7N</scope><scope>M7P</scope><scope>MBDVC</scope><scope>P64</scope><scope>PCBAR</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>Q9U</scope><scope>RC3</scope><scope>7T7</scope><scope>5PM</scope></search><sort><creationdate>20090722</creationdate><title>Structure and function of a complex between chorismate mutase and DAHP synthase: efficiency boost for the junior partner</title><author>Sasso, Severin ; Ökvist, Mats ; Roderer, Kathrin ; Gamper, Marianne ; Codoni, Giosiana ; Krengel, Ute ; Kast, Peter</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5725-d6a84394b054540324b044f69a1213c3515c3e3cd2dc2de09ab207efc30701253</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>3-Deoxy-7-Phosphoheptulonate Synthase - chemistry</topic><topic>3-Deoxy-7-Phosphoheptulonate Synthase - metabolism</topic><topic>Actinomycetales</topic><topic>Amino Acid Sequence</topic><topic>Biochemistry</topic><topic>Catalysis</topic><topic>Catalytic Domain</topic><topic>Cellular biology</topic><topic>Chorismate Mutase - chemistry</topic><topic>Chorismate Mutase - genetics</topic><topic>Chorismate Mutase - metabolism</topic><topic>Cloning, Molecular</topic><topic>Corynebacterium glutamicum - enzymology</topic><topic>Crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>EMBO23</topic><topic>EMBO40</topic><topic>Enzyme Activation</topic><topic>enzyme catalysis</topic><topic>Enzymes</topic><topic>Malates - chemistry</topic><topic>Models, Molecular</topic><topic>Molecular biology</topic><topic>Molecular Sequence Data</topic><topic>multi-enzyme complex</topic><topic>Mycobacterium tuberculosis</topic><topic>Mycobacterium tuberculosis - chemistry</topic><topic>Mycobacterium tuberculosis - enzymology</topic><topic>Mycobacterium tuberculosis - metabolism</topic><topic>Mycobacterium tuberculosis Rv0948c</topic><topic>Phenylalanine - metabolism</topic><topic>Residues</topic><topic>Sequence Alignment</topic><topic>shikimate pathway</topic><topic>Shikimic Acid - metabolism</topic><topic>Tuberculosis</topic><topic>Tyrosine - metabolism</topic><topic>X-ray crystal structure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sasso, Severin</creatorcontrib><creatorcontrib>Ökvist, Mats</creatorcontrib><creatorcontrib>Roderer, Kathrin</creatorcontrib><creatorcontrib>Gamper, Marianne</creatorcontrib><creatorcontrib>Codoni, Giosiana</creatorcontrib><creatorcontrib>Krengel, Ute</creatorcontrib><creatorcontrib>Kast, Peter</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Animal Behavior Abstracts</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Immunology Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Virology and AIDS Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Public Health Database</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Earth, Atmospheric & Aquatic Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Research Library</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>ProQuest Biological Science Journals</collection><collection>Research Library (Corporate)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Earth, Atmospheric & Aquatic Science Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The EMBO journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Sasso, Severin</au><au>Ökvist, Mats</au><au>Roderer, Kathrin</au><au>Gamper, Marianne</au><au>Codoni, Giosiana</au><au>Krengel, Ute</au><au>Kast, Peter</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Structure and function of a complex between chorismate mutase and DAHP synthase: efficiency boost for the junior partner</atitle><jtitle>The EMBO journal</jtitle><stitle>EMBO J</stitle><addtitle>EMBO J</addtitle><date>2009-07-22</date><risdate>2009</risdate><volume>28</volume><issue>14</issue><spage>2128</spage><epage>2142</epage><pages>2128-2142</pages><issn>0261-4189</issn><eissn>1460-2075</eissn><coden>EMJODG</coden><abstract>Chorismate mutase catalyzes a key step in the shikimate biosynthetic pathway towards phenylalanine and tyrosine. Curiously, the intracellular chorismate mutase of
Mycobacterium tuberculosis
(MtCM; Rv0948c) has poor activity and lacks prominent active‐site residues. However, its catalytic efficiency increases >100‐fold on addition of DAHP synthase (MtDS; Rv2178c), another shikimate‐pathway enzyme. The 2.35 Å crystal structure of the MtCM–MtDS complex bound to a transition‐state analogue shows a central core formed by four MtDS subunits sandwiched between two MtCM dimers. Structural comparisons imply catalytic activation to be a consequence of the repositioning of MtCM active‐site residues on binding to MtDS. The mutagenesis of the C‐terminal extrusion of MtCM establishes conserved residues as part of the activation machinery. The chorismate‐mutase activity of the complex, but not of MtCM alone, is inhibited synergistically by phenylalanine and tyrosine. The complex formation thus endows the shikimate pathway of
M. tuberculosis
with an important regulatory feature. Experimental evidence suggests that such non‐covalent enzyme complexes comprising an AroQ
δ
subclass chorismate mutase like MtCM are abundant in the bacterial order
Actinomycetales
.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>19556970</pmid><doi>10.1038/emboj.2009.165</doi><tpages>15</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 0261-4189 |
ispartof | The EMBO journal, 2009-07, Vol.28 (14), p.2128-2142 |
issn | 0261-4189 1460-2075 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2718287 |
source | Springer Nature OA Free Journals |
subjects | 3-Deoxy-7-Phosphoheptulonate Synthase - chemistry 3-Deoxy-7-Phosphoheptulonate Synthase - metabolism Actinomycetales Amino Acid Sequence Biochemistry Catalysis Catalytic Domain Cellular biology Chorismate Mutase - chemistry Chorismate Mutase - genetics Chorismate Mutase - metabolism Cloning, Molecular Corynebacterium glutamicum - enzymology Crystal structure Crystallography, X-Ray EMBO23 EMBO40 Enzyme Activation enzyme catalysis Enzymes Malates - chemistry Models, Molecular Molecular biology Molecular Sequence Data multi-enzyme complex Mycobacterium tuberculosis Mycobacterium tuberculosis - chemistry Mycobacterium tuberculosis - enzymology Mycobacterium tuberculosis - metabolism Mycobacterium tuberculosis Rv0948c Phenylalanine - metabolism Residues Sequence Alignment shikimate pathway Shikimic Acid - metabolism Tuberculosis Tyrosine - metabolism X-ray crystal structure |
title | Structure and function of a complex between chorismate mutase and DAHP synthase: efficiency boost for the junior partner |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-08T02%3A59%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_C6C&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Structure%20and%20function%20of%20a%20complex%20between%20chorismate%20mutase%20and%20DAHP%20synthase:%20efficiency%20boost%20for%20the%20junior%20partner&rft.jtitle=The%20EMBO%20journal&rft.au=Sasso,%20Severin&rft.date=2009-07-22&rft.volume=28&rft.issue=14&rft.spage=2128&rft.epage=2142&rft.pages=2128-2142&rft.issn=0261-4189&rft.eissn=1460-2075&rft.coden=EMJODG&rft_id=info:doi/10.1038/emboj.2009.165&rft_dat=%3Cproquest_C6C%3E20944006%3C/proquest_C6C%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195265826&rft_id=info:pmid/19556970&rfr_iscdi=true |