The Tumbleweed: towards a synthetic proteinmotor

Biomolecular motors have inspired the design and construction of artificial nanoscale motors and machines based on nucleic acids, small molecules, and inorganic nanostructures. However, the high degree of sophistication and efficiency of biomolecular motors, as well as their specific biological func...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:HFSP Journal 2009-06, Vol.3 (3), p.204-212
Hauptverfasser: Bromley, Elizabeth H C, Kuwada, Nathan J, Zuckermann, Martin J, Donadini, Roberta, Samii, Laleh, Blab, Gerhard A, Gemmen, Gregory J, Lopez, Benjamin J, Curmi, Paul M G, Forde, Nancy R, Woolfson, Derek N, Linke, Heiner
Format: Artikel
Sprache:eng
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 212
container_issue 3
container_start_page 204
container_title HFSP Journal
container_volume 3
creator Bromley, Elizabeth H C
Kuwada, Nathan J
Zuckermann, Martin J
Donadini, Roberta
Samii, Laleh
Blab, Gerhard A
Gemmen, Gregory J
Lopez, Benjamin J
Curmi, Paul M G
Forde, Nancy R
Woolfson, Derek N
Linke, Heiner
description Biomolecular motors have inspired the design and construction of artificial nanoscale motors and machines based on nucleic acids, small molecules, and inorganic nanostructures. However, the high degree of sophistication and efficiency of biomolecular motors, as well as their specific biological function, derives from the complexity afforded by protein building blocks. Here, we discuss a novel bottom-up approach to understanding biological motors by considering the construction of synthetic protein motors. Specifically, we present a design for a synthetic protein motor that moves along a linear track, dubbed the "Tumbleweed." This concept uses three discrete ligand-dependent DNA-binding domains to perform cyclically ligand-gated, rectified diffusion along a synthesized DNA molecule. Here we describe how de novo peptide design and molecular biology could be used to produce the Tumbleweed, and we explore the fundamental motor operation of such a design using numerical simulations. The construction of this and more sophisticated protein motors is an exciting challenge that is likely to enhance our understanding of the structure-function relationship in biological motors.
doi_str_mv 10.2976/1.3111282
format Article
fullrecord <record><control><sourceid>pubmed</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2714957</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>19639042</sourcerecordid><originalsourceid>FETCH-LOGICAL-p1107-f0c9a274c22d98deb3a818253fe7e64c040abba2f592c9b5d9df82dfc526910b3</originalsourceid><addsrcrecordid>eNpVj8tKw0AYhQdRbK0ufAHJC6TO_09mJuNCkFIvUHATwV2YW0wkNyZTS99eQS26OgcO3weHkEugS1RSXMOSAQDmeETmoDhPkfLX40MX-YycTdM7pVyIDE7JDJRgimY4J7SofVJsO9P6nffuJonDTgc3JTqZ9n2sfWxsMoYh-qbvhjiEc3JS6XbyFz-5IC_362L1mG6eH55Wd5t0BKAyrahVGmVmEZ3KnTdM55AjZ5WXXmSWZlQbo7HiCq0y3ClX5egqy1EooIYtyO23d9yazjvr-xh0W46h6XTYl4Nuyv9L39Tl2_BRooRMcfkluPorOJC_39knltxbng</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>The Tumbleweed: towards a synthetic proteinmotor</title><source>PubMed Central</source><creator>Bromley, Elizabeth H C ; Kuwada, Nathan J ; Zuckermann, Martin J ; Donadini, Roberta ; Samii, Laleh ; Blab, Gerhard A ; Gemmen, Gregory J ; Lopez, Benjamin J ; Curmi, Paul M G ; Forde, Nancy R ; Woolfson, Derek N ; Linke, Heiner</creator><creatorcontrib>Bromley, Elizabeth H C ; Kuwada, Nathan J ; Zuckermann, Martin J ; Donadini, Roberta ; Samii, Laleh ; Blab, Gerhard A ; Gemmen, Gregory J ; Lopez, Benjamin J ; Curmi, Paul M G ; Forde, Nancy R ; Woolfson, Derek N ; Linke, Heiner</creatorcontrib><description>Biomolecular motors have inspired the design and construction of artificial nanoscale motors and machines based on nucleic acids, small molecules, and inorganic nanostructures. However, the high degree of sophistication and efficiency of biomolecular motors, as well as their specific biological function, derives from the complexity afforded by protein building blocks. Here, we discuss a novel bottom-up approach to understanding biological motors by considering the construction of synthetic protein motors. Specifically, we present a design for a synthetic protein motor that moves along a linear track, dubbed the "Tumbleweed." This concept uses three discrete ligand-dependent DNA-binding domains to perform cyclically ligand-gated, rectified diffusion along a synthesized DNA molecule. Here we describe how de novo peptide design and molecular biology could be used to produce the Tumbleweed, and we explore the fundamental motor operation of such a design using numerical simulations. The construction of this and more sophisticated protein motors is an exciting challenge that is likely to enhance our understanding of the structure-function relationship in biological motors.</description><identifier>ISSN: 1955-2068</identifier><identifier>EISSN: 1955-205X</identifier><identifier>DOI: 10.2976/1.3111282</identifier><identifier>PMID: 19639042</identifier><language>eng</language><publisher>France: HFSP Publishing</publisher><ispartof>HFSP Journal, 2009-06, Vol.3 (3), p.204-212</ispartof><rights>Copyright © 2009 HFSP Publishing 2009 HFSP Publishing</rights><woscitedreferencessubscribed>false</woscitedreferencessubscribed></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714957/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2714957/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,27924,27925,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19639042$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bromley, Elizabeth H C</creatorcontrib><creatorcontrib>Kuwada, Nathan J</creatorcontrib><creatorcontrib>Zuckermann, Martin J</creatorcontrib><creatorcontrib>Donadini, Roberta</creatorcontrib><creatorcontrib>Samii, Laleh</creatorcontrib><creatorcontrib>Blab, Gerhard A</creatorcontrib><creatorcontrib>Gemmen, Gregory J</creatorcontrib><creatorcontrib>Lopez, Benjamin J</creatorcontrib><creatorcontrib>Curmi, Paul M G</creatorcontrib><creatorcontrib>Forde, Nancy R</creatorcontrib><creatorcontrib>Woolfson, Derek N</creatorcontrib><creatorcontrib>Linke, Heiner</creatorcontrib><title>The Tumbleweed: towards a synthetic proteinmotor</title><title>HFSP Journal</title><addtitle>HFSP J</addtitle><description>Biomolecular motors have inspired the design and construction of artificial nanoscale motors and machines based on nucleic acids, small molecules, and inorganic nanostructures. However, the high degree of sophistication and efficiency of biomolecular motors, as well as their specific biological function, derives from the complexity afforded by protein building blocks. Here, we discuss a novel bottom-up approach to understanding biological motors by considering the construction of synthetic protein motors. Specifically, we present a design for a synthetic protein motor that moves along a linear track, dubbed the "Tumbleweed." This concept uses three discrete ligand-dependent DNA-binding domains to perform cyclically ligand-gated, rectified diffusion along a synthesized DNA molecule. Here we describe how de novo peptide design and molecular biology could be used to produce the Tumbleweed, and we explore the fundamental motor operation of such a design using numerical simulations. The construction of this and more sophisticated protein motors is an exciting challenge that is likely to enhance our understanding of the structure-function relationship in biological motors.</description><issn>1955-2068</issn><issn>1955-205X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><recordid>eNpVj8tKw0AYhQdRbK0ufAHJC6TO_09mJuNCkFIvUHATwV2YW0wkNyZTS99eQS26OgcO3weHkEugS1RSXMOSAQDmeETmoDhPkfLX40MX-YycTdM7pVyIDE7JDJRgimY4J7SofVJsO9P6nffuJonDTgc3JTqZ9n2sfWxsMoYh-qbvhjiEc3JS6XbyFz-5IC_362L1mG6eH55Wd5t0BKAyrahVGmVmEZ3KnTdM55AjZ5WXXmSWZlQbo7HiCq0y3ClX5egqy1EooIYtyO23d9yazjvr-xh0W46h6XTYl4Nuyv9L39Tl2_BRooRMcfkluPorOJC_39knltxbng</recordid><startdate>200906</startdate><enddate>200906</enddate><creator>Bromley, Elizabeth H C</creator><creator>Kuwada, Nathan J</creator><creator>Zuckermann, Martin J</creator><creator>Donadini, Roberta</creator><creator>Samii, Laleh</creator><creator>Blab, Gerhard A</creator><creator>Gemmen, Gregory J</creator><creator>Lopez, Benjamin J</creator><creator>Curmi, Paul M G</creator><creator>Forde, Nancy R</creator><creator>Woolfson, Derek N</creator><creator>Linke, Heiner</creator><general>HFSP Publishing</general><scope>NPM</scope><scope>5PM</scope></search><sort><creationdate>200906</creationdate><title>The Tumbleweed: towards a synthetic proteinmotor</title><author>Bromley, Elizabeth H C ; Kuwada, Nathan J ; Zuckermann, Martin J ; Donadini, Roberta ; Samii, Laleh ; Blab, Gerhard A ; Gemmen, Gregory J ; Lopez, Benjamin J ; Curmi, Paul M G ; Forde, Nancy R ; Woolfson, Derek N ; Linke, Heiner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-p1107-f0c9a274c22d98deb3a818253fe7e64c040abba2f592c9b5d9df82dfc526910b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><toplevel>online_resources</toplevel><creatorcontrib>Bromley, Elizabeth H C</creatorcontrib><creatorcontrib>Kuwada, Nathan J</creatorcontrib><creatorcontrib>Zuckermann, Martin J</creatorcontrib><creatorcontrib>Donadini, Roberta</creatorcontrib><creatorcontrib>Samii, Laleh</creatorcontrib><creatorcontrib>Blab, Gerhard A</creatorcontrib><creatorcontrib>Gemmen, Gregory J</creatorcontrib><creatorcontrib>Lopez, Benjamin J</creatorcontrib><creatorcontrib>Curmi, Paul M G</creatorcontrib><creatorcontrib>Forde, Nancy R</creatorcontrib><creatorcontrib>Woolfson, Derek N</creatorcontrib><creatorcontrib>Linke, Heiner</creatorcontrib><collection>PubMed</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>HFSP Journal</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bromley, Elizabeth H C</au><au>Kuwada, Nathan J</au><au>Zuckermann, Martin J</au><au>Donadini, Roberta</au><au>Samii, Laleh</au><au>Blab, Gerhard A</au><au>Gemmen, Gregory J</au><au>Lopez, Benjamin J</au><au>Curmi, Paul M G</au><au>Forde, Nancy R</au><au>Woolfson, Derek N</au><au>Linke, Heiner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Tumbleweed: towards a synthetic proteinmotor</atitle><jtitle>HFSP Journal</jtitle><addtitle>HFSP J</addtitle><date>2009-06</date><risdate>2009</risdate><volume>3</volume><issue>3</issue><spage>204</spage><epage>212</epage><pages>204-212</pages><issn>1955-2068</issn><eissn>1955-205X</eissn><abstract>Biomolecular motors have inspired the design and construction of artificial nanoscale motors and machines based on nucleic acids, small molecules, and inorganic nanostructures. However, the high degree of sophistication and efficiency of biomolecular motors, as well as their specific biological function, derives from the complexity afforded by protein building blocks. Here, we discuss a novel bottom-up approach to understanding biological motors by considering the construction of synthetic protein motors. Specifically, we present a design for a synthetic protein motor that moves along a linear track, dubbed the "Tumbleweed." This concept uses three discrete ligand-dependent DNA-binding domains to perform cyclically ligand-gated, rectified diffusion along a synthesized DNA molecule. Here we describe how de novo peptide design and molecular biology could be used to produce the Tumbleweed, and we explore the fundamental motor operation of such a design using numerical simulations. The construction of this and more sophisticated protein motors is an exciting challenge that is likely to enhance our understanding of the structure-function relationship in biological motors.</abstract><cop>France</cop><pub>HFSP Publishing</pub><pmid>19639042</pmid><doi>10.2976/1.3111282</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1955-2068
ispartof HFSP Journal, 2009-06, Vol.3 (3), p.204-212
issn 1955-2068
1955-205X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2714957
source PubMed Central
title The Tumbleweed: towards a synthetic proteinmotor
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T13%3A39%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-pubmed&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Tumbleweed:%20towards%20a%20synthetic%20proteinmotor&rft.jtitle=HFSP%20Journal&rft.au=Bromley,%20Elizabeth%20H%20C&rft.date=2009-06&rft.volume=3&rft.issue=3&rft.spage=204&rft.epage=212&rft.pages=204-212&rft.issn=1955-2068&rft.eissn=1955-205X&rft_id=info:doi/10.2976/1.3111282&rft_dat=%3Cpubmed%3E19639042%3C/pubmed%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19639042&rfr_iscdi=true