Rheological Properties of Cross-Linked Hyaluronan-Gelatin Hydrogels for Tissue Engineering

Hydrogels that mimic the natural extracellular matrix (ECM) are used in three‐dimensional cell culture, cell therapy, and tissue engineering. A semi‐synthetic ECM based on cross‐linked hyaluronana offers experimental control of both composition and gel stiffness. The mechanical properties of the ECM...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Macromolecular bioscience 2009-01, Vol.9 (1), p.20-28
Hauptverfasser: Vanderhooft, Janssen L., Alcoutlabi, Mataz, Magda, Jules J., Prestwich, Glenn D.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 28
container_issue 1
container_start_page 20
container_title Macromolecular bioscience
container_volume 9
creator Vanderhooft, Janssen L.
Alcoutlabi, Mataz
Magda, Jules J.
Prestwich, Glenn D.
description Hydrogels that mimic the natural extracellular matrix (ECM) are used in three‐dimensional cell culture, cell therapy, and tissue engineering. A semi‐synthetic ECM based on cross‐linked hyaluronana offers experimental control of both composition and gel stiffness. The mechanical properties of the ECM in part determine the ultimate cell phenotype. We now describe a rheological study of synthetic ECM hydrogels with storage shear moduli that span three orders of magnitude, from 11 to 3 500 Pa, a range important for engineering of soft tissues. The concentration of the chemically modified HA and the cross‐linking density were the main determinants of gel stiffness. Increase in the ratio of thiol‐modified gelatin reduced gel stiffness by diluting the effective concentration of the HA component.
doi_str_mv 10.1002/mabi.200800141
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2711643</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>35603626</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6341-41934a0273c7248ed6bf9ddfe9fb663bd2c228fab0f82ce519d86a00e7e5fbe83</originalsourceid><addsrcrecordid>eNqFkc1v0zAYxiMEYmNw5YhygVuKPxLHviBt1WgnlU8VTeJiOcnrzMy1i50A_e9x1SqMU0-27N_z-nn8ZNlLjGYYIfJ2oxozIwhxhHCJH2XnmGFWVFhUj6c9r8-yZzH-SEjNBXmanWHOqSgROc--f70Db31vWmXzz8FvIQwGYu51Pg8-xmJl3D10-XKn7Bi8U65YgFWDcemoC74HG3PtQ742MY6QX7veOIBgXP88e6KVjfDiuF5k395fr-fLYvVpcTO_XBUtoyUuSixoqRCpaVuTkkPHGi26ToPQDWO06UhLCNeqQZqTFlK0jjOFENRQ6QY4vcjeHeZux2YDXQtuCMrKbTAbFXbSKyP_v3HmTvb-lyQ1xqykacCb44Dgf44QB7kxsQVrlQM_RskY54iV6CRIK4YoI-wkSFAlKlFWCZwdwHb_2QH0ZBsjuS9Y7guWU8FJ8Oph2H_4sdEEvD4CKqZOdVCuNXHiCEY4edyHFgfut7GwO_Gs_HB5dfPQRHHQmjjAn0mrwr1kNa0reftxIRfLtbidf0Hyiv4FyvLQTA</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20595945</pqid></control><display><type>article</type><title>Rheological Properties of Cross-Linked Hyaluronan-Gelatin Hydrogels for Tissue Engineering</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Vanderhooft, Janssen L. ; Alcoutlabi, Mataz ; Magda, Jules J. ; Prestwich, Glenn D.</creator><creatorcontrib>Vanderhooft, Janssen L. ; Alcoutlabi, Mataz ; Magda, Jules J. ; Prestwich, Glenn D.</creatorcontrib><description>Hydrogels that mimic the natural extracellular matrix (ECM) are used in three‐dimensional cell culture, cell therapy, and tissue engineering. A semi‐synthetic ECM based on cross‐linked hyaluronana offers experimental control of both composition and gel stiffness. The mechanical properties of the ECM in part determine the ultimate cell phenotype. We now describe a rheological study of synthetic ECM hydrogels with storage shear moduli that span three orders of magnitude, from 11 to 3 500 Pa, a range important for engineering of soft tissues. The concentration of the chemically modified HA and the cross‐linking density were the main determinants of gel stiffness. Increase in the ratio of thiol‐modified gelatin reduced gel stiffness by diluting the effective concentration of the HA component.</description><identifier>ISSN: 1616-5187</identifier><identifier>EISSN: 1616-5195</identifier><identifier>DOI: 10.1002/mabi.200800141</identifier><identifier>PMID: 18839402</identifier><language>eng</language><publisher>Weinheim: WILEY-VCH Verlag</publisher><subject>Applied sciences ; Biocompatible Materials - chemistry ; Biological and medical sciences ; biomaterials ; Cross-Linking Reagents - chemistry ; Elasticity ; Exact sciences and technology ; Extracellular Matrix - chemistry ; Gelatin - chemistry ; hyaluronic acid ; Hyaluronic Acid - chemistry ; hydrogels ; Hydrogels - chemistry ; Materials Testing ; Medical sciences ; Molecular Structure ; Natural polymers ; Physicochemistry of polymers ; Proteins ; Rheology ; Shear Strength ; Starch and polysaccharides ; Stress, Mechanical ; Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases ; Technology. Biomaterials. Equipments ; tissue engineering ; Tissue Engineering - methods</subject><ispartof>Macromolecular bioscience, 2009-01, Vol.9 (1), p.20-28</ispartof><rights>Copyright © 2009 WILEY‐VCH Verlag GmbH &amp; Co. KGaA, Weinheim</rights><rights>2009 INIST-CNRS</rights><rights>2009 WILEY-VCH Verlag GmbH &amp; Co. KGaA, Weinheim 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6341-41934a0273c7248ed6bf9ddfe9fb663bd2c228fab0f82ce519d86a00e7e5fbe83</citedby><cites>FETCH-LOGICAL-c6341-41934a0273c7248ed6bf9ddfe9fb663bd2c228fab0f82ce519d86a00e7e5fbe83</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1002%2Fmabi.200800141$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1002%2Fmabi.200800141$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21010363$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18839402$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Vanderhooft, Janssen L.</creatorcontrib><creatorcontrib>Alcoutlabi, Mataz</creatorcontrib><creatorcontrib>Magda, Jules J.</creatorcontrib><creatorcontrib>Prestwich, Glenn D.</creatorcontrib><title>Rheological Properties of Cross-Linked Hyaluronan-Gelatin Hydrogels for Tissue Engineering</title><title>Macromolecular bioscience</title><addtitle>Macromol. Biosci</addtitle><description>Hydrogels that mimic the natural extracellular matrix (ECM) are used in three‐dimensional cell culture, cell therapy, and tissue engineering. A semi‐synthetic ECM based on cross‐linked hyaluronana offers experimental control of both composition and gel stiffness. The mechanical properties of the ECM in part determine the ultimate cell phenotype. We now describe a rheological study of synthetic ECM hydrogels with storage shear moduli that span three orders of magnitude, from 11 to 3 500 Pa, a range important for engineering of soft tissues. The concentration of the chemically modified HA and the cross‐linking density were the main determinants of gel stiffness. Increase in the ratio of thiol‐modified gelatin reduced gel stiffness by diluting the effective concentration of the HA component.</description><subject>Applied sciences</subject><subject>Biocompatible Materials - chemistry</subject><subject>Biological and medical sciences</subject><subject>biomaterials</subject><subject>Cross-Linking Reagents - chemistry</subject><subject>Elasticity</subject><subject>Exact sciences and technology</subject><subject>Extracellular Matrix - chemistry</subject><subject>Gelatin - chemistry</subject><subject>hyaluronic acid</subject><subject>Hyaluronic Acid - chemistry</subject><subject>hydrogels</subject><subject>Hydrogels - chemistry</subject><subject>Materials Testing</subject><subject>Medical sciences</subject><subject>Molecular Structure</subject><subject>Natural polymers</subject><subject>Physicochemistry of polymers</subject><subject>Proteins</subject><subject>Rheology</subject><subject>Shear Strength</subject><subject>Starch and polysaccharides</subject><subject>Stress, Mechanical</subject><subject>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</subject><subject>Technology. Biomaterials. Equipments</subject><subject>tissue engineering</subject><subject>Tissue Engineering - methods</subject><issn>1616-5187</issn><issn>1616-5195</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkc1v0zAYxiMEYmNw5YhygVuKPxLHviBt1WgnlU8VTeJiOcnrzMy1i50A_e9x1SqMU0-27N_z-nn8ZNlLjGYYIfJ2oxozIwhxhHCJH2XnmGFWVFhUj6c9r8-yZzH-SEjNBXmanWHOqSgROc--f70Db31vWmXzz8FvIQwGYu51Pg8-xmJl3D10-XKn7Bi8U65YgFWDcemoC74HG3PtQ742MY6QX7veOIBgXP88e6KVjfDiuF5k395fr-fLYvVpcTO_XBUtoyUuSixoqRCpaVuTkkPHGi26ToPQDWO06UhLCNeqQZqTFlK0jjOFENRQ6QY4vcjeHeZux2YDXQtuCMrKbTAbFXbSKyP_v3HmTvb-lyQ1xqykacCb44Dgf44QB7kxsQVrlQM_RskY54iV6CRIK4YoI-wkSFAlKlFWCZwdwHb_2QH0ZBsjuS9Y7guWU8FJ8Oph2H_4sdEEvD4CKqZOdVCuNXHiCEY4edyHFgfut7GwO_Gs_HB5dfPQRHHQmjjAn0mrwr1kNa0reftxIRfLtbidf0Hyiv4FyvLQTA</recordid><startdate>20090109</startdate><enddate>20090109</enddate><creator>Vanderhooft, Janssen L.</creator><creator>Alcoutlabi, Mataz</creator><creator>Magda, Jules J.</creator><creator>Prestwich, Glenn D.</creator><general>WILEY-VCH Verlag</general><general>WILEY‐VCH Verlag</general><general>Wiley-VCH</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>8FD</scope><scope>FR3</scope><scope>P64</scope><scope>7SR</scope><scope>7U5</scope><scope>JG9</scope><scope>L7M</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090109</creationdate><title>Rheological Properties of Cross-Linked Hyaluronan-Gelatin Hydrogels for Tissue Engineering</title><author>Vanderhooft, Janssen L. ; Alcoutlabi, Mataz ; Magda, Jules J. ; Prestwich, Glenn D.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6341-41934a0273c7248ed6bf9ddfe9fb663bd2c228fab0f82ce519d86a00e7e5fbe83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Applied sciences</topic><topic>Biocompatible Materials - chemistry</topic><topic>Biological and medical sciences</topic><topic>biomaterials</topic><topic>Cross-Linking Reagents - chemistry</topic><topic>Elasticity</topic><topic>Exact sciences and technology</topic><topic>Extracellular Matrix - chemistry</topic><topic>Gelatin - chemistry</topic><topic>hyaluronic acid</topic><topic>Hyaluronic Acid - chemistry</topic><topic>hydrogels</topic><topic>Hydrogels - chemistry</topic><topic>Materials Testing</topic><topic>Medical sciences</topic><topic>Molecular Structure</topic><topic>Natural polymers</topic><topic>Physicochemistry of polymers</topic><topic>Proteins</topic><topic>Rheology</topic><topic>Shear Strength</topic><topic>Starch and polysaccharides</topic><topic>Stress, Mechanical</topic><topic>Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases</topic><topic>Technology. Biomaterials. Equipments</topic><topic>tissue engineering</topic><topic>Tissue Engineering - methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Vanderhooft, Janssen L.</creatorcontrib><creatorcontrib>Alcoutlabi, Mataz</creatorcontrib><creatorcontrib>Magda, Jules J.</creatorcontrib><creatorcontrib>Prestwich, Glenn D.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Materials Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Macromolecular bioscience</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Vanderhooft, Janssen L.</au><au>Alcoutlabi, Mataz</au><au>Magda, Jules J.</au><au>Prestwich, Glenn D.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Rheological Properties of Cross-Linked Hyaluronan-Gelatin Hydrogels for Tissue Engineering</atitle><jtitle>Macromolecular bioscience</jtitle><addtitle>Macromol. Biosci</addtitle><date>2009-01-09</date><risdate>2009</risdate><volume>9</volume><issue>1</issue><spage>20</spage><epage>28</epage><pages>20-28</pages><issn>1616-5187</issn><eissn>1616-5195</eissn><abstract>Hydrogels that mimic the natural extracellular matrix (ECM) are used in three‐dimensional cell culture, cell therapy, and tissue engineering. A semi‐synthetic ECM based on cross‐linked hyaluronana offers experimental control of both composition and gel stiffness. The mechanical properties of the ECM in part determine the ultimate cell phenotype. We now describe a rheological study of synthetic ECM hydrogels with storage shear moduli that span three orders of magnitude, from 11 to 3 500 Pa, a range important for engineering of soft tissues. The concentration of the chemically modified HA and the cross‐linking density were the main determinants of gel stiffness. Increase in the ratio of thiol‐modified gelatin reduced gel stiffness by diluting the effective concentration of the HA component.</abstract><cop>Weinheim</cop><pub>WILEY-VCH Verlag</pub><pmid>18839402</pmid><doi>10.1002/mabi.200800141</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1616-5187
ispartof Macromolecular bioscience, 2009-01, Vol.9 (1), p.20-28
issn 1616-5187
1616-5195
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2711643
source MEDLINE; Access via Wiley Online Library
subjects Applied sciences
Biocompatible Materials - chemistry
Biological and medical sciences
biomaterials
Cross-Linking Reagents - chemistry
Elasticity
Exact sciences and technology
Extracellular Matrix - chemistry
Gelatin - chemistry
hyaluronic acid
Hyaluronic Acid - chemistry
hydrogels
Hydrogels - chemistry
Materials Testing
Medical sciences
Molecular Structure
Natural polymers
Physicochemistry of polymers
Proteins
Rheology
Shear Strength
Starch and polysaccharides
Stress, Mechanical
Surgery (general aspects). Transplantations, organ and tissue grafts. Graft diseases
Technology. Biomaterials. Equipments
tissue engineering
Tissue Engineering - methods
title Rheological Properties of Cross-Linked Hyaluronan-Gelatin Hydrogels for Tissue Engineering
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T19%3A48%3A29IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Rheological%20Properties%20of%20Cross-Linked%20Hyaluronan-Gelatin%20Hydrogels%20for%20Tissue%20Engineering&rft.jtitle=Macromolecular%20bioscience&rft.au=Vanderhooft,%20Janssen%20L.&rft.date=2009-01-09&rft.volume=9&rft.issue=1&rft.spage=20&rft.epage=28&rft.pages=20-28&rft.issn=1616-5187&rft.eissn=1616-5195&rft_id=info:doi/10.1002/mabi.200800141&rft_dat=%3Cproquest_pubme%3E35603626%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=20595945&rft_id=info:pmid/18839402&rfr_iscdi=true