Using a 3-D Virtual Sunflower to Simulate Light Capture at Organ, Plant and Plot Levels: Contribution of Organ Interception, Impact of Heliotropism and Analysis of Genotypic Differences
BACKGROUND AND AIMS: Light interception is a critical factor in the production of biomass. The study presented here describes a method used to take account of architectural changes over time in sunflower and to estimate absorbed light at the organ level. METHODS: The amount of photosynthetically act...
Gespeichert in:
Veröffentlicht in: | Annals of botany 2008-05, Vol.101 (8), p.1139-1151 |
---|---|
Hauptverfasser: | , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1151 |
---|---|
container_issue | 8 |
container_start_page | 1139 |
container_title | Annals of botany |
container_volume | 101 |
creator | Rey, Hervé Dauzat, Jean Chenu, Karine Barczi, Jean-François Dosio, Guillermo A.A Lecoeur, Jérémie |
description | BACKGROUND AND AIMS: Light interception is a critical factor in the production of biomass. The study presented here describes a method used to take account of architectural changes over time in sunflower and to estimate absorbed light at the organ level. METHODS: The amount of photosynthetically active radiation absorbed by a plant is estimated on a daily or hourly basis through precise characterization of the light environment and three-dimensional virtual plants built using AMAP software. Several treatments are performed over four experiments and on two genotypes to test the model, quantify the contribution of different organs to light interception and evaluate the impact of heliotropism. KEY RESULTS: This approach is used to simulate the amount of light absorbed at organ and plant scales from crop emergence to maturity. Blades and capitula were the major contributors to light interception, whereas that by petioles and stem was negligible. Light regimen simulations showed that heliotropism decreased the cumulated light intercepted at the plant scale by close to 2·2 % over one day. CONCLUSIONS: The approach is useful in characterizing the light environment of organs and the whole plant, especially for studies on heterogeneous canopies or for quantifying genotypic or environmental impacts on plant architecture, where conventional approaches are ineffective. This model paves the way to analyses of genotype-environment interactions and could help establish new selection criteria based on architectural improvement, enhancing plant light interception. |
doi_str_mv | 10.1093/aob/mcm300 |
format | Article |
fullrecord | <record><control><sourceid>jstor_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2710280</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><jstor_id>43575883</jstor_id><oup_id>10.1093/aob/mcm300</oup_id><sourcerecordid>43575883</sourcerecordid><originalsourceid>FETCH-LOGICAL-c585t-d27770254365bf9efa725e3b64e380d59f6babc90824c63f5958424668aa304c3</originalsourceid><addsrcrecordid>eNp9kk9v0zAYxiMEYmNw4Q5YSHBADfOf2HE4IFUdrJUqBiqd0C6W4zqtSxIH2yn0o_HtcMk0YAdOtt7n58d-Xz9J8hjB1wgW5FTa8rRRDYHwTnIcKzTluIB3k2NIIE1zwrKj5IH3WwghZgW6nxwhjhHPIT1Ofi69addAApKegUvjQi9rsOjbqrbftQPBgoVp-loGDeZmvQlgIrvQOw1kABduLdsR-FjLNgDZruLOBjDXO137N2Bi2-BM2QdjW2CrgQazNmindHeojsCs6aQKB3Wqa2ODs53xzW-vcSvrvTf-IJ7r1oZ9ZxQ4M1WlnW6V9g-Te5WsvX50vZ4ky_fvPk-m6fzifDYZz1NFOQ3pCud5DjHNCKNlVehK5phqUrJMEw5XtKhYKUtVQI4zxUhFC8oznDHGpSQwU-QkeTv4dn3Z6JXSsS1Zi86ZRrq9sNKIf5XWbMTa7gTOEcQcRoPRYLC5dWw6notY8yst4s8UEHG2QxF_eX2fs9967YNojFe6jlPWtvcCxw_GiPEIPr8Fbm3v4ti8QAWFOOaBROjVAClnvXe6unkBguKQHhHTI4b0RPjp363-Qa_jEoEXA2D77v9GTwZu64N1N2RGaE45P7wqHXTjg_5xo0v3VbCc5FRMv1yJq2zy4dP0kggW-WcDX0kr5NoZL5YLDFG8ixeIkoz8Av518M0</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>195023003</pqid></control><display><type>article</type><title>Using a 3-D Virtual Sunflower to Simulate Light Capture at Organ, Plant and Plot Levels: Contribution of Organ Interception, Impact of Heliotropism and Analysis of Genotypic Differences</title><source>MEDLINE</source><source>Jstor Complete Legacy</source><source>Oxford University Press Journals All Titles (1996-Current)</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Rey, Hervé ; Dauzat, Jean ; Chenu, Karine ; Barczi, Jean-François ; Dosio, Guillermo A.A ; Lecoeur, Jérémie</creator><creatorcontrib>Rey, Hervé ; Dauzat, Jean ; Chenu, Karine ; Barczi, Jean-François ; Dosio, Guillermo A.A ; Lecoeur, Jérémie</creatorcontrib><description>BACKGROUND AND AIMS: Light interception is a critical factor in the production of biomass. The study presented here describes a method used to take account of architectural changes over time in sunflower and to estimate absorbed light at the organ level. METHODS: The amount of photosynthetically active radiation absorbed by a plant is estimated on a daily or hourly basis through precise characterization of the light environment and three-dimensional virtual plants built using AMAP software. Several treatments are performed over four experiments and on two genotypes to test the model, quantify the contribution of different organs to light interception and evaluate the impact of heliotropism. KEY RESULTS: This approach is used to simulate the amount of light absorbed at organ and plant scales from crop emergence to maturity. Blades and capitula were the major contributors to light interception, whereas that by petioles and stem was negligible. Light regimen simulations showed that heliotropism decreased the cumulated light intercepted at the plant scale by close to 2·2 % over one day. CONCLUSIONS: The approach is useful in characterizing the light environment of organs and the whole plant, especially for studies on heterogeneous canopies or for quantifying genotypic or environmental impacts on plant architecture, where conventional approaches are ineffective. This model paves the way to analyses of genotype-environment interactions and could help establish new selection criteria based on architectural improvement, enhancing plant light interception.</description><identifier>ISSN: 0305-7364</identifier><identifier>EISSN: 1095-8290</identifier><identifier>DOI: 10.1093/aob/mcm300</identifier><identifier>PMID: 18218705</identifier><language>eng</language><publisher>England: Oxford University Press</publisher><subject>3-D virtual plant ; Architectural models ; Architecture ; Biomass ; Computer Simulation ; domain_sde.mcg.agro ; Environmental Sciences ; Genotype ; Global Changes ; Helianthus ; Helianthus - anatomy & histology ; Helianthus - genetics ; Helianthus - growth & development ; Helianthus annuus ; heliotropism ; Imaging, Three-Dimensional - methods ; Inflorescences ; Leaves ; Life Sciences ; Light ; light interception ; Models, Biological ; organ irradiance ; Original ; Petioles ; Photosynthetically active radiation ; Phototropism - radiation effects ; plant architecture ; Plants ; radiative balance ; sunflower ; Sunflowers ; Vegetal Biology ; Vegetation canopies</subject><ispartof>Annals of botany, 2008-05, Vol.101 (8), p.1139-1151</ispartof><rights>Annals of Botany Company 2008</rights><rights>The Author 2008. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2008</rights><rights>The Author 2008. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c585t-d27770254365bf9efa725e3b64e380d59f6babc90824c63f5958424668aa304c3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.jstor.org/stable/pdf/43575883$$EPDF$$P50$$Gjstor$$H</linktopdf><linktohtml>$$Uhttps://www.jstor.org/stable/43575883$$EHTML$$P50$$Gjstor$$H</linktohtml><link.rule.ids>230,314,727,780,784,803,885,1583,27922,27923,53789,53791,58015,58248</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18218705$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://hal.science/halsde-00290186$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Rey, Hervé</creatorcontrib><creatorcontrib>Dauzat, Jean</creatorcontrib><creatorcontrib>Chenu, Karine</creatorcontrib><creatorcontrib>Barczi, Jean-François</creatorcontrib><creatorcontrib>Dosio, Guillermo A.A</creatorcontrib><creatorcontrib>Lecoeur, Jérémie</creatorcontrib><title>Using a 3-D Virtual Sunflower to Simulate Light Capture at Organ, Plant and Plot Levels: Contribution of Organ Interception, Impact of Heliotropism and Analysis of Genotypic Differences</title><title>Annals of botany</title><addtitle>Ann Bot</addtitle><description>BACKGROUND AND AIMS: Light interception is a critical factor in the production of biomass. The study presented here describes a method used to take account of architectural changes over time in sunflower and to estimate absorbed light at the organ level. METHODS: The amount of photosynthetically active radiation absorbed by a plant is estimated on a daily or hourly basis through precise characterization of the light environment and three-dimensional virtual plants built using AMAP software. Several treatments are performed over four experiments and on two genotypes to test the model, quantify the contribution of different organs to light interception and evaluate the impact of heliotropism. KEY RESULTS: This approach is used to simulate the amount of light absorbed at organ and plant scales from crop emergence to maturity. Blades and capitula were the major contributors to light interception, whereas that by petioles and stem was negligible. Light regimen simulations showed that heliotropism decreased the cumulated light intercepted at the plant scale by close to 2·2 % over one day. CONCLUSIONS: The approach is useful in characterizing the light environment of organs and the whole plant, especially for studies on heterogeneous canopies or for quantifying genotypic or environmental impacts on plant architecture, where conventional approaches are ineffective. This model paves the way to analyses of genotype-environment interactions and could help establish new selection criteria based on architectural improvement, enhancing plant light interception.</description><subject>3-D virtual plant</subject><subject>Architectural models</subject><subject>Architecture</subject><subject>Biomass</subject><subject>Computer Simulation</subject><subject>domain_sde.mcg.agro</subject><subject>Environmental Sciences</subject><subject>Genotype</subject><subject>Global Changes</subject><subject>Helianthus</subject><subject>Helianthus - anatomy & histology</subject><subject>Helianthus - genetics</subject><subject>Helianthus - growth & development</subject><subject>Helianthus annuus</subject><subject>heliotropism</subject><subject>Imaging, Three-Dimensional - methods</subject><subject>Inflorescences</subject><subject>Leaves</subject><subject>Life Sciences</subject><subject>Light</subject><subject>light interception</subject><subject>Models, Biological</subject><subject>organ irradiance</subject><subject>Original</subject><subject>Petioles</subject><subject>Photosynthetically active radiation</subject><subject>Phototropism - radiation effects</subject><subject>plant architecture</subject><subject>Plants</subject><subject>radiative balance</subject><subject>sunflower</subject><subject>Sunflowers</subject><subject>Vegetal Biology</subject><subject>Vegetation canopies</subject><issn>0305-7364</issn><issn>1095-8290</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp9kk9v0zAYxiMEYmNw4Q5YSHBADfOf2HE4IFUdrJUqBiqd0C6W4zqtSxIH2yn0o_HtcMk0YAdOtt7n58d-Xz9J8hjB1wgW5FTa8rRRDYHwTnIcKzTluIB3k2NIIE1zwrKj5IH3WwghZgW6nxwhjhHPIT1Ofi69addAApKegUvjQi9rsOjbqrbftQPBgoVp-loGDeZmvQlgIrvQOw1kABduLdsR-FjLNgDZruLOBjDXO137N2Bi2-BM2QdjW2CrgQazNmindHeojsCs6aQKB3Wqa2ODs53xzW-vcSvrvTf-IJ7r1oZ9ZxQ4M1WlnW6V9g-Te5WsvX50vZ4ky_fvPk-m6fzifDYZz1NFOQ3pCud5DjHNCKNlVehK5phqUrJMEw5XtKhYKUtVQI4zxUhFC8oznDHGpSQwU-QkeTv4dn3Z6JXSsS1Zi86ZRrq9sNKIf5XWbMTa7gTOEcQcRoPRYLC5dWw6notY8yst4s8UEHG2QxF_eX2fs9967YNojFe6jlPWtvcCxw_GiPEIPr8Fbm3v4ti8QAWFOOaBROjVAClnvXe6unkBguKQHhHTI4b0RPjp363-Qa_jEoEXA2D77v9GTwZu64N1N2RGaE45P7wqHXTjg_5xo0v3VbCc5FRMv1yJq2zy4dP0kggW-WcDX0kr5NoZL5YLDFG8ixeIkoz8Av518M0</recordid><startdate>20080501</startdate><enddate>20080501</enddate><creator>Rey, Hervé</creator><creator>Dauzat, Jean</creator><creator>Chenu, Karine</creator><creator>Barczi, Jean-François</creator><creator>Dosio, Guillermo A.A</creator><creator>Lecoeur, Jérémie</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><general>Oxford University Press (OUP)</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7SN</scope><scope>7T7</scope><scope>7TM</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>P64</scope><scope>RC3</scope><scope>1XC</scope><scope>5PM</scope></search><sort><creationdate>20080501</creationdate><title>Using a 3-D Virtual Sunflower to Simulate Light Capture at Organ, Plant and Plot Levels: Contribution of Organ Interception, Impact of Heliotropism and Analysis of Genotypic Differences</title><author>Rey, Hervé ; Dauzat, Jean ; Chenu, Karine ; Barczi, Jean-François ; Dosio, Guillermo A.A ; Lecoeur, Jérémie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c585t-d27770254365bf9efa725e3b64e380d59f6babc90824c63f5958424668aa304c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>3-D virtual plant</topic><topic>Architectural models</topic><topic>Architecture</topic><topic>Biomass</topic><topic>Computer Simulation</topic><topic>domain_sde.mcg.agro</topic><topic>Environmental Sciences</topic><topic>Genotype</topic><topic>Global Changes</topic><topic>Helianthus</topic><topic>Helianthus - anatomy & histology</topic><topic>Helianthus - genetics</topic><topic>Helianthus - growth & development</topic><topic>Helianthus annuus</topic><topic>heliotropism</topic><topic>Imaging, Three-Dimensional - methods</topic><topic>Inflorescences</topic><topic>Leaves</topic><topic>Life Sciences</topic><topic>Light</topic><topic>light interception</topic><topic>Models, Biological</topic><topic>organ irradiance</topic><topic>Original</topic><topic>Petioles</topic><topic>Photosynthetically active radiation</topic><topic>Phototropism - radiation effects</topic><topic>plant architecture</topic><topic>Plants</topic><topic>radiative balance</topic><topic>sunflower</topic><topic>Sunflowers</topic><topic>Vegetal Biology</topic><topic>Vegetation canopies</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Rey, Hervé</creatorcontrib><creatorcontrib>Dauzat, Jean</creatorcontrib><creatorcontrib>Chenu, Karine</creatorcontrib><creatorcontrib>Barczi, Jean-François</creatorcontrib><creatorcontrib>Dosio, Guillermo A.A</creatorcontrib><creatorcontrib>Lecoeur, Jérémie</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Ecology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Annals of botany</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Rey, Hervé</au><au>Dauzat, Jean</au><au>Chenu, Karine</au><au>Barczi, Jean-François</au><au>Dosio, Guillermo A.A</au><au>Lecoeur, Jérémie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using a 3-D Virtual Sunflower to Simulate Light Capture at Organ, Plant and Plot Levels: Contribution of Organ Interception, Impact of Heliotropism and Analysis of Genotypic Differences</atitle><jtitle>Annals of botany</jtitle><addtitle>Ann Bot</addtitle><date>2008-05-01</date><risdate>2008</risdate><volume>101</volume><issue>8</issue><spage>1139</spage><epage>1151</epage><pages>1139-1151</pages><issn>0305-7364</issn><eissn>1095-8290</eissn><abstract>BACKGROUND AND AIMS: Light interception is a critical factor in the production of biomass. The study presented here describes a method used to take account of architectural changes over time in sunflower and to estimate absorbed light at the organ level. METHODS: The amount of photosynthetically active radiation absorbed by a plant is estimated on a daily or hourly basis through precise characterization of the light environment and three-dimensional virtual plants built using AMAP software. Several treatments are performed over four experiments and on two genotypes to test the model, quantify the contribution of different organs to light interception and evaluate the impact of heliotropism. KEY RESULTS: This approach is used to simulate the amount of light absorbed at organ and plant scales from crop emergence to maturity. Blades and capitula were the major contributors to light interception, whereas that by petioles and stem was negligible. Light regimen simulations showed that heliotropism decreased the cumulated light intercepted at the plant scale by close to 2·2 % over one day. CONCLUSIONS: The approach is useful in characterizing the light environment of organs and the whole plant, especially for studies on heterogeneous canopies or for quantifying genotypic or environmental impacts on plant architecture, where conventional approaches are ineffective. This model paves the way to analyses of genotype-environment interactions and could help establish new selection criteria based on architectural improvement, enhancing plant light interception.</abstract><cop>England</cop><pub>Oxford University Press</pub><pmid>18218705</pmid><doi>10.1093/aob/mcm300</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0305-7364 |
ispartof | Annals of botany, 2008-05, Vol.101 (8), p.1139-1151 |
issn | 0305-7364 1095-8290 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2710280 |
source | MEDLINE; Jstor Complete Legacy; Oxford University Press Journals All Titles (1996-Current); EZB-FREE-00999 freely available EZB journals; PubMed Central |
subjects | 3-D virtual plant Architectural models Architecture Biomass Computer Simulation domain_sde.mcg.agro Environmental Sciences Genotype Global Changes Helianthus Helianthus - anatomy & histology Helianthus - genetics Helianthus - growth & development Helianthus annuus heliotropism Imaging, Three-Dimensional - methods Inflorescences Leaves Life Sciences Light light interception Models, Biological organ irradiance Original Petioles Photosynthetically active radiation Phototropism - radiation effects plant architecture Plants radiative balance sunflower Sunflowers Vegetal Biology Vegetation canopies |
title | Using a 3-D Virtual Sunflower to Simulate Light Capture at Organ, Plant and Plot Levels: Contribution of Organ Interception, Impact of Heliotropism and Analysis of Genotypic Differences |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-14T09%3A52%3A36IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-jstor_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20a%203-D%20Virtual%20Sunflower%20to%20Simulate%20Light%20Capture%20at%20Organ,%20Plant%20and%20Plot%20Levels:%20Contribution%20of%20Organ%20Interception,%20Impact%20of%20Heliotropism%20and%20Analysis%20of%20Genotypic%20Differences&rft.jtitle=Annals%20of%20botany&rft.au=Rey,%20Herv%C3%A9&rft.date=2008-05-01&rft.volume=101&rft.issue=8&rft.spage=1139&rft.epage=1151&rft.pages=1139-1151&rft.issn=0305-7364&rft.eissn=1095-8290&rft_id=info:doi/10.1093/aob/mcm300&rft_dat=%3Cjstor_pubme%3E43575883%3C/jstor_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=195023003&rft_id=info:pmid/18218705&rft_jstor_id=43575883&rft_oup_id=10.1093/aob/mcm300&rfr_iscdi=true |