Biological Functions of miR-29b Contribute to Positive Regulation of Osteoblast Differentiation

Bone tissue arises from mesenchymal cells induced into the osteoblast lineage by essential transcription factors and signaling cascades. MicroRNAs regulate biological processes by binding to mRNA 3′-untranslated region (UTR) sequences to attenuate protein synthesis. Here we performed microRNA profil...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:The Journal of biological chemistry 2009-06, Vol.284 (23), p.15676-15684
Hauptverfasser: Li, Zhaoyong, Hassan, Mohammad Q., Jafferji, Mohammed, Aqeilan, Rami I., Garzon, Ramiro, Croce, Carlo M., van Wijnen, Andre J., Stein, Janet L., Stein, Gary S., Lian, Jane B.
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 15684
container_issue 23
container_start_page 15676
container_title The Journal of biological chemistry
container_volume 284
creator Li, Zhaoyong
Hassan, Mohammad Q.
Jafferji, Mohammed
Aqeilan, Rami I.
Garzon, Ramiro
Croce, Carlo M.
van Wijnen, Andre J.
Stein, Janet L.
Stein, Gary S.
Lian, Jane B.
description Bone tissue arises from mesenchymal cells induced into the osteoblast lineage by essential transcription factors and signaling cascades. MicroRNAs regulate biological processes by binding to mRNA 3′-untranslated region (UTR) sequences to attenuate protein synthesis. Here we performed microRNA profiling and identified miRs that are up-regulated through stages of osteoblast differentiation. Among these are the miR-29, miR-let-7, and miR-26 families that target many collagens and extracellular matrix proteins. We find that miR-29b supports osteoblast differentiation through several mechanisms. miR-29b decreased and anti-miR-29b increased activity of COL1A1, COL5A3, and COL4A2 3′-UTR sequences in reporter assays, as well as endogenous gene expression. These results support a mechanism for regulating collagen protein accumulation during the mineralization stage when miR-29b reaches peak levels. We propose that this mechanism prevents fibrosis and facilitates mineral deposition. Our studies further demonstrate that miR-29b promotes osteogenesis by directly down-regulating known inhibitors of osteoblast differentiation, HDAC4, TGFβ3, ACVR2A, CTNNBIP1, and DUSP2 proteins through binding to target 3′-UTR sequences in their mRNAs. Thus, miR-29b is a key regulator of development of the osteoblast phenotype by targeting anti-osteogenic factors and modulating bone extracellular matrix proteins.
doi_str_mv 10.1074/jbc.M809787200
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2708864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820425438</els_id><sourcerecordid>67312858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-453cf74bb33659379c87fdd44011194336da8ef1b74aa732eb2724cc2d4783113</originalsourceid><addsrcrecordid>eNqF0c2L1DAYBvAgijuuXj1qD-KtY77apBdBR1eFlZXVBW8hSd92srTNmqQj_vemdnD1IOYSSH55eMOD0GOCtwQL_uLa2O1HiRshBcX4DtoQLFnJKvL1LtpgTEnZ0EqeoAcxXuO8eEPuoxPSME6ZpBukXjs_-N5ZPRRn82ST81MsfFeM7rKkjSl2fkrBmTlBkXzxyUeX3AGKS-jnQS96wRcxgTeDjql447oOAkzJ_bp9iO51eojw6Lifoquzt19278vzi3cfdq_OS1tJkUpeMdsJbgxjddUw0VgpurblHBNCGp5PWy2hI0ZwrQWjYKig3FraciEZIewUvVxzb2YzQmvzAEEP6ia4UYcfymun_r6Z3F71_qCowFLWPAc8PwYE_22GmNToooVh0BP4OapaMEJlJf8LKcENp_UCtyu0wccYoPs9DcFqKU_l8tRtefnBkz__cMuPbWXwbAV71--_uwDKOG_3MCoquaJMkaoWdWZPV9Zpr3QfXFRXnykmDJOa1ZgtQq4CciUHB0FF62Cy0OZQm1Tr3b-G_AkC_L4l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21094268</pqid></control><display><type>article</type><title>Biological Functions of miR-29b Contribute to Positive Regulation of Osteoblast Differentiation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Li, Zhaoyong ; Hassan, Mohammad Q. ; Jafferji, Mohammed ; Aqeilan, Rami I. ; Garzon, Ramiro ; Croce, Carlo M. ; van Wijnen, Andre J. ; Stein, Janet L. ; Stein, Gary S. ; Lian, Jane B.</creator><creatorcontrib>Li, Zhaoyong ; Hassan, Mohammad Q. ; Jafferji, Mohammed ; Aqeilan, Rami I. ; Garzon, Ramiro ; Croce, Carlo M. ; van Wijnen, Andre J. ; Stein, Janet L. ; Stein, Gary S. ; Lian, Jane B.</creatorcontrib><description>Bone tissue arises from mesenchymal cells induced into the osteoblast lineage by essential transcription factors and signaling cascades. MicroRNAs regulate biological processes by binding to mRNA 3′-untranslated region (UTR) sequences to attenuate protein synthesis. Here we performed microRNA profiling and identified miRs that are up-regulated through stages of osteoblast differentiation. Among these are the miR-29, miR-let-7, and miR-26 families that target many collagens and extracellular matrix proteins. We find that miR-29b supports osteoblast differentiation through several mechanisms. miR-29b decreased and anti-miR-29b increased activity of COL1A1, COL5A3, and COL4A2 3′-UTR sequences in reporter assays, as well as endogenous gene expression. These results support a mechanism for regulating collagen protein accumulation during the mineralization stage when miR-29b reaches peak levels. We propose that this mechanism prevents fibrosis and facilitates mineral deposition. Our studies further demonstrate that miR-29b promotes osteogenesis by directly down-regulating known inhibitors of osteoblast differentiation, HDAC4, TGFβ3, ACVR2A, CTNNBIP1, and DUSP2 proteins through binding to target 3′-UTR sequences in their mRNAs. Thus, miR-29b is a key regulator of development of the osteoblast phenotype by targeting anti-osteogenic factors and modulating bone extracellular matrix proteins.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M809787200</identifier><identifier>PMID: 19342382</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3' Untranslated Regions - genetics ; 3T3 Cells ; Animals ; Blotting, Western ; Cell Differentiation ; DNA Primers ; Gene Expression Profiling ; Mice ; MicroRNAs - genetics ; Osteoblasts - cytology ; Plasmids ; Rats ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; RNA-Mediated Regulation and Noncoding RNAs ; Transfection</subject><ispartof>The Journal of biological chemistry, 2009-06, Vol.284 (23), p.15676-15684</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2009 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-453cf74bb33659379c87fdd44011194336da8ef1b74aa732eb2724cc2d4783113</citedby><cites>FETCH-LOGICAL-c587t-453cf74bb33659379c87fdd44011194336da8ef1b74aa732eb2724cc2d4783113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708864/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708864/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19342382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhaoyong</creatorcontrib><creatorcontrib>Hassan, Mohammad Q.</creatorcontrib><creatorcontrib>Jafferji, Mohammed</creatorcontrib><creatorcontrib>Aqeilan, Rami I.</creatorcontrib><creatorcontrib>Garzon, Ramiro</creatorcontrib><creatorcontrib>Croce, Carlo M.</creatorcontrib><creatorcontrib>van Wijnen, Andre J.</creatorcontrib><creatorcontrib>Stein, Janet L.</creatorcontrib><creatorcontrib>Stein, Gary S.</creatorcontrib><creatorcontrib>Lian, Jane B.</creatorcontrib><title>Biological Functions of miR-29b Contribute to Positive Regulation of Osteoblast Differentiation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Bone tissue arises from mesenchymal cells induced into the osteoblast lineage by essential transcription factors and signaling cascades. MicroRNAs regulate biological processes by binding to mRNA 3′-untranslated region (UTR) sequences to attenuate protein synthesis. Here we performed microRNA profiling and identified miRs that are up-regulated through stages of osteoblast differentiation. Among these are the miR-29, miR-let-7, and miR-26 families that target many collagens and extracellular matrix proteins. We find that miR-29b supports osteoblast differentiation through several mechanisms. miR-29b decreased and anti-miR-29b increased activity of COL1A1, COL5A3, and COL4A2 3′-UTR sequences in reporter assays, as well as endogenous gene expression. These results support a mechanism for regulating collagen protein accumulation during the mineralization stage when miR-29b reaches peak levels. We propose that this mechanism prevents fibrosis and facilitates mineral deposition. Our studies further demonstrate that miR-29b promotes osteogenesis by directly down-regulating known inhibitors of osteoblast differentiation, HDAC4, TGFβ3, ACVR2A, CTNNBIP1, and DUSP2 proteins through binding to target 3′-UTR sequences in their mRNAs. Thus, miR-29b is a key regulator of development of the osteoblast phenotype by targeting anti-osteogenic factors and modulating bone extracellular matrix proteins.</description><subject>3' Untranslated Regions - genetics</subject><subject>3T3 Cells</subject><subject>Animals</subject><subject>Blotting, Western</subject><subject>Cell Differentiation</subject><subject>DNA Primers</subject><subject>Gene Expression Profiling</subject><subject>Mice</subject><subject>MicroRNAs - genetics</subject><subject>Osteoblasts - cytology</subject><subject>Plasmids</subject><subject>Rats</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>RNA-Mediated Regulation and Noncoding RNAs</subject><subject>Transfection</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c2L1DAYBvAgijuuXj1qD-KtY77apBdBR1eFlZXVBW8hSd92srTNmqQj_vemdnD1IOYSSH55eMOD0GOCtwQL_uLa2O1HiRshBcX4DtoQLFnJKvL1LtpgTEnZ0EqeoAcxXuO8eEPuoxPSME6ZpBukXjs_-N5ZPRRn82ST81MsfFeM7rKkjSl2fkrBmTlBkXzxyUeX3AGKS-jnQS96wRcxgTeDjql447oOAkzJ_bp9iO51eojw6Lifoquzt19278vzi3cfdq_OS1tJkUpeMdsJbgxjddUw0VgpurblHBNCGp5PWy2hI0ZwrQWjYKig3FraciEZIewUvVxzb2YzQmvzAEEP6ia4UYcfymun_r6Z3F71_qCowFLWPAc8PwYE_22GmNToooVh0BP4OapaMEJlJf8LKcENp_UCtyu0wccYoPs9DcFqKU_l8tRtefnBkz__cMuPbWXwbAV71--_uwDKOG_3MCoquaJMkaoWdWZPV9Zpr3QfXFRXnykmDJOa1ZgtQq4CciUHB0FF62Cy0OZQm1Tr3b-G_AkC_L4l</recordid><startdate>20090605</startdate><enddate>20090605</enddate><creator>Li, Zhaoyong</creator><creator>Hassan, Mohammad Q.</creator><creator>Jafferji, Mohammed</creator><creator>Aqeilan, Rami I.</creator><creator>Garzon, Ramiro</creator><creator>Croce, Carlo M.</creator><creator>van Wijnen, Andre J.</creator><creator>Stein, Janet L.</creator><creator>Stein, Gary S.</creator><creator>Lian, Jane B.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090605</creationdate><title>Biological Functions of miR-29b Contribute to Positive Regulation of Osteoblast Differentiation</title><author>Li, Zhaoyong ; Hassan, Mohammad Q. ; Jafferji, Mohammed ; Aqeilan, Rami I. ; Garzon, Ramiro ; Croce, Carlo M. ; van Wijnen, Andre J. ; Stein, Janet L. ; Stein, Gary S. ; Lian, Jane B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-453cf74bb33659379c87fdd44011194336da8ef1b74aa732eb2724cc2d4783113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>3' Untranslated Regions - genetics</topic><topic>3T3 Cells</topic><topic>Animals</topic><topic>Blotting, Western</topic><topic>Cell Differentiation</topic><topic>DNA Primers</topic><topic>Gene Expression Profiling</topic><topic>Mice</topic><topic>MicroRNAs - genetics</topic><topic>Osteoblasts - cytology</topic><topic>Plasmids</topic><topic>Rats</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>RNA-Mediated Regulation and Noncoding RNAs</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhaoyong</creatorcontrib><creatorcontrib>Hassan, Mohammad Q.</creatorcontrib><creatorcontrib>Jafferji, Mohammed</creatorcontrib><creatorcontrib>Aqeilan, Rami I.</creatorcontrib><creatorcontrib>Garzon, Ramiro</creatorcontrib><creatorcontrib>Croce, Carlo M.</creatorcontrib><creatorcontrib>van Wijnen, Andre J.</creatorcontrib><creatorcontrib>Stein, Janet L.</creatorcontrib><creatorcontrib>Stein, Gary S.</creatorcontrib><creatorcontrib>Lian, Jane B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhaoyong</au><au>Hassan, Mohammad Q.</au><au>Jafferji, Mohammed</au><au>Aqeilan, Rami I.</au><au>Garzon, Ramiro</au><au>Croce, Carlo M.</au><au>van Wijnen, Andre J.</au><au>Stein, Janet L.</au><au>Stein, Gary S.</au><au>Lian, Jane B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological Functions of miR-29b Contribute to Positive Regulation of Osteoblast Differentiation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-06-05</date><risdate>2009</risdate><volume>284</volume><issue>23</issue><spage>15676</spage><epage>15684</epage><pages>15676-15684</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Bone tissue arises from mesenchymal cells induced into the osteoblast lineage by essential transcription factors and signaling cascades. MicroRNAs regulate biological processes by binding to mRNA 3′-untranslated region (UTR) sequences to attenuate protein synthesis. Here we performed microRNA profiling and identified miRs that are up-regulated through stages of osteoblast differentiation. Among these are the miR-29, miR-let-7, and miR-26 families that target many collagens and extracellular matrix proteins. We find that miR-29b supports osteoblast differentiation through several mechanisms. miR-29b decreased and anti-miR-29b increased activity of COL1A1, COL5A3, and COL4A2 3′-UTR sequences in reporter assays, as well as endogenous gene expression. These results support a mechanism for regulating collagen protein accumulation during the mineralization stage when miR-29b reaches peak levels. We propose that this mechanism prevents fibrosis and facilitates mineral deposition. Our studies further demonstrate that miR-29b promotes osteogenesis by directly down-regulating known inhibitors of osteoblast differentiation, HDAC4, TGFβ3, ACVR2A, CTNNBIP1, and DUSP2 proteins through binding to target 3′-UTR sequences in their mRNAs. Thus, miR-29b is a key regulator of development of the osteoblast phenotype by targeting anti-osteogenic factors and modulating bone extracellular matrix proteins.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19342382</pmid><doi>10.1074/jbc.M809787200</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0021-9258
ispartof The Journal of biological chemistry, 2009-06, Vol.284 (23), p.15676-15684
issn 0021-9258
1083-351X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2708864
source MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection
subjects 3' Untranslated Regions - genetics
3T3 Cells
Animals
Blotting, Western
Cell Differentiation
DNA Primers
Gene Expression Profiling
Mice
MicroRNAs - genetics
Osteoblasts - cytology
Plasmids
Rats
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
RNA-Mediated Regulation and Noncoding RNAs
Transfection
title Biological Functions of miR-29b Contribute to Positive Regulation of Osteoblast Differentiation
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20Functions%20of%20miR-29b%20Contribute%20to%20Positive%20Regulation%20of%20Osteoblast%20Differentiation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Li,%20Zhaoyong&rft.date=2009-06-05&rft.volume=284&rft.issue=23&rft.spage=15676&rft.epage=15684&rft.pages=15676-15684&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M809787200&rft_dat=%3Cproquest_pubme%3E67312858%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21094268&rft_id=info:pmid/19342382&rft_els_id=S0021925820425438&rfr_iscdi=true