Biological Functions of miR-29b Contribute to Positive Regulation of Osteoblast Differentiation
Bone tissue arises from mesenchymal cells induced into the osteoblast lineage by essential transcription factors and signaling cascades. MicroRNAs regulate biological processes by binding to mRNA 3′-untranslated region (UTR) sequences to attenuate protein synthesis. Here we performed microRNA profil...
Gespeichert in:
Veröffentlicht in: | The Journal of biological chemistry 2009-06, Vol.284 (23), p.15676-15684 |
---|---|
Hauptverfasser: | , , , , , , , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 15684 |
---|---|
container_issue | 23 |
container_start_page | 15676 |
container_title | The Journal of biological chemistry |
container_volume | 284 |
creator | Li, Zhaoyong Hassan, Mohammad Q. Jafferji, Mohammed Aqeilan, Rami I. Garzon, Ramiro Croce, Carlo M. van Wijnen, Andre J. Stein, Janet L. Stein, Gary S. Lian, Jane B. |
description | Bone tissue arises from mesenchymal cells induced into the osteoblast lineage by essential transcription factors and signaling cascades. MicroRNAs regulate biological processes by binding to mRNA 3′-untranslated region (UTR) sequences to attenuate protein synthesis. Here we performed microRNA profiling and identified miRs that are up-regulated through stages of osteoblast differentiation. Among these are the miR-29, miR-let-7, and miR-26 families that target many collagens and extracellular matrix proteins. We find that miR-29b supports osteoblast differentiation through several mechanisms. miR-29b decreased and anti-miR-29b increased activity of COL1A1, COL5A3, and COL4A2 3′-UTR sequences in reporter assays, as well as endogenous gene expression. These results support a mechanism for regulating collagen protein accumulation during the mineralization stage when miR-29b reaches peak levels. We propose that this mechanism prevents fibrosis and facilitates mineral deposition. Our studies further demonstrate that miR-29b promotes osteogenesis by directly down-regulating known inhibitors of osteoblast differentiation, HDAC4, TGFβ3, ACVR2A, CTNNBIP1, and DUSP2 proteins through binding to target 3′-UTR sequences in their mRNAs. Thus, miR-29b is a key regulator of development of the osteoblast phenotype by targeting anti-osteogenic factors and modulating bone extracellular matrix proteins. |
doi_str_mv | 10.1074/jbc.M809787200 |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2708864</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0021925820425438</els_id><sourcerecordid>67312858</sourcerecordid><originalsourceid>FETCH-LOGICAL-c587t-453cf74bb33659379c87fdd44011194336da8ef1b74aa732eb2724cc2d4783113</originalsourceid><addsrcrecordid>eNqF0c2L1DAYBvAgijuuXj1qD-KtY77apBdBR1eFlZXVBW8hSd92srTNmqQj_vemdnD1IOYSSH55eMOD0GOCtwQL_uLa2O1HiRshBcX4DtoQLFnJKvL1LtpgTEnZ0EqeoAcxXuO8eEPuoxPSME6ZpBukXjs_-N5ZPRRn82ST81MsfFeM7rKkjSl2fkrBmTlBkXzxyUeX3AGKS-jnQS96wRcxgTeDjql447oOAkzJ_bp9iO51eojw6Lifoquzt19278vzi3cfdq_OS1tJkUpeMdsJbgxjddUw0VgpurblHBNCGp5PWy2hI0ZwrQWjYKig3FraciEZIewUvVxzb2YzQmvzAEEP6ia4UYcfymun_r6Z3F71_qCowFLWPAc8PwYE_22GmNToooVh0BP4OapaMEJlJf8LKcENp_UCtyu0wccYoPs9DcFqKU_l8tRtefnBkz__cMuPbWXwbAV71--_uwDKOG_3MCoquaJMkaoWdWZPV9Zpr3QfXFRXnykmDJOa1ZgtQq4CciUHB0FF62Cy0OZQm1Tr3b-G_AkC_L4l</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21094268</pqid></control><display><type>article</type><title>Biological Functions of miR-29b Contribute to Positive Regulation of Osteoblast Differentiation</title><source>MEDLINE</source><source>Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals</source><source>PubMed Central</source><source>Alma/SFX Local Collection</source><creator>Li, Zhaoyong ; Hassan, Mohammad Q. ; Jafferji, Mohammed ; Aqeilan, Rami I. ; Garzon, Ramiro ; Croce, Carlo M. ; van Wijnen, Andre J. ; Stein, Janet L. ; Stein, Gary S. ; Lian, Jane B.</creator><creatorcontrib>Li, Zhaoyong ; Hassan, Mohammad Q. ; Jafferji, Mohammed ; Aqeilan, Rami I. ; Garzon, Ramiro ; Croce, Carlo M. ; van Wijnen, Andre J. ; Stein, Janet L. ; Stein, Gary S. ; Lian, Jane B.</creatorcontrib><description>Bone tissue arises from mesenchymal cells induced into the osteoblast lineage by essential transcription factors and signaling cascades. MicroRNAs regulate biological processes by binding to mRNA 3′-untranslated region (UTR) sequences to attenuate protein synthesis. Here we performed microRNA profiling and identified miRs that are up-regulated through stages of osteoblast differentiation. Among these are the miR-29, miR-let-7, and miR-26 families that target many collagens and extracellular matrix proteins. We find that miR-29b supports osteoblast differentiation through several mechanisms. miR-29b decreased and anti-miR-29b increased activity of COL1A1, COL5A3, and COL4A2 3′-UTR sequences in reporter assays, as well as endogenous gene expression. These results support a mechanism for regulating collagen protein accumulation during the mineralization stage when miR-29b reaches peak levels. We propose that this mechanism prevents fibrosis and facilitates mineral deposition. Our studies further demonstrate that miR-29b promotes osteogenesis by directly down-regulating known inhibitors of osteoblast differentiation, HDAC4, TGFβ3, ACVR2A, CTNNBIP1, and DUSP2 proteins through binding to target 3′-UTR sequences in their mRNAs. Thus, miR-29b is a key regulator of development of the osteoblast phenotype by targeting anti-osteogenic factors and modulating bone extracellular matrix proteins.</description><identifier>ISSN: 0021-9258</identifier><identifier>EISSN: 1083-351X</identifier><identifier>DOI: 10.1074/jbc.M809787200</identifier><identifier>PMID: 19342382</identifier><language>eng</language><publisher>United States: Elsevier Inc</publisher><subject>3' Untranslated Regions - genetics ; 3T3 Cells ; Animals ; Blotting, Western ; Cell Differentiation ; DNA Primers ; Gene Expression Profiling ; Mice ; MicroRNAs - genetics ; Osteoblasts - cytology ; Plasmids ; Rats ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; RNA-Mediated Regulation and Noncoding RNAs ; Transfection</subject><ispartof>The Journal of biological chemistry, 2009-06, Vol.284 (23), p.15676-15684</ispartof><rights>2009 © 2009 ASBMB. Currently published by Elsevier Inc; originally published by American Society for Biochemistry and Molecular Biology.</rights><rights>2009 by The American Society for Biochemistry and Molecular Biology, Inc.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c587t-453cf74bb33659379c87fdd44011194336da8ef1b74aa732eb2724cc2d4783113</citedby><cites>FETCH-LOGICAL-c587t-453cf74bb33659379c87fdd44011194336da8ef1b74aa732eb2724cc2d4783113</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708864/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708864/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,723,776,780,881,27901,27902,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19342382$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Zhaoyong</creatorcontrib><creatorcontrib>Hassan, Mohammad Q.</creatorcontrib><creatorcontrib>Jafferji, Mohammed</creatorcontrib><creatorcontrib>Aqeilan, Rami I.</creatorcontrib><creatorcontrib>Garzon, Ramiro</creatorcontrib><creatorcontrib>Croce, Carlo M.</creatorcontrib><creatorcontrib>van Wijnen, Andre J.</creatorcontrib><creatorcontrib>Stein, Janet L.</creatorcontrib><creatorcontrib>Stein, Gary S.</creatorcontrib><creatorcontrib>Lian, Jane B.</creatorcontrib><title>Biological Functions of miR-29b Contribute to Positive Regulation of Osteoblast Differentiation</title><title>The Journal of biological chemistry</title><addtitle>J Biol Chem</addtitle><description>Bone tissue arises from mesenchymal cells induced into the osteoblast lineage by essential transcription factors and signaling cascades. MicroRNAs regulate biological processes by binding to mRNA 3′-untranslated region (UTR) sequences to attenuate protein synthesis. Here we performed microRNA profiling and identified miRs that are up-regulated through stages of osteoblast differentiation. Among these are the miR-29, miR-let-7, and miR-26 families that target many collagens and extracellular matrix proteins. We find that miR-29b supports osteoblast differentiation through several mechanisms. miR-29b decreased and anti-miR-29b increased activity of COL1A1, COL5A3, and COL4A2 3′-UTR sequences in reporter assays, as well as endogenous gene expression. These results support a mechanism for regulating collagen protein accumulation during the mineralization stage when miR-29b reaches peak levels. We propose that this mechanism prevents fibrosis and facilitates mineral deposition. Our studies further demonstrate that miR-29b promotes osteogenesis by directly down-regulating known inhibitors of osteoblast differentiation, HDAC4, TGFβ3, ACVR2A, CTNNBIP1, and DUSP2 proteins through binding to target 3′-UTR sequences in their mRNAs. Thus, miR-29b is a key regulator of development of the osteoblast phenotype by targeting anti-osteogenic factors and modulating bone extracellular matrix proteins.</description><subject>3' Untranslated Regions - genetics</subject><subject>3T3 Cells</subject><subject>Animals</subject><subject>Blotting, Western</subject><subject>Cell Differentiation</subject><subject>DNA Primers</subject><subject>Gene Expression Profiling</subject><subject>Mice</subject><subject>MicroRNAs - genetics</subject><subject>Osteoblasts - cytology</subject><subject>Plasmids</subject><subject>Rats</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>RNA-Mediated Regulation and Noncoding RNAs</subject><subject>Transfection</subject><issn>0021-9258</issn><issn>1083-351X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqF0c2L1DAYBvAgijuuXj1qD-KtY77apBdBR1eFlZXVBW8hSd92srTNmqQj_vemdnD1IOYSSH55eMOD0GOCtwQL_uLa2O1HiRshBcX4DtoQLFnJKvL1LtpgTEnZ0EqeoAcxXuO8eEPuoxPSME6ZpBukXjs_-N5ZPRRn82ST81MsfFeM7rKkjSl2fkrBmTlBkXzxyUeX3AGKS-jnQS96wRcxgTeDjql447oOAkzJ_bp9iO51eojw6Lifoquzt19278vzi3cfdq_OS1tJkUpeMdsJbgxjddUw0VgpurblHBNCGp5PWy2hI0ZwrQWjYKig3FraciEZIewUvVxzb2YzQmvzAEEP6ia4UYcfymun_r6Z3F71_qCowFLWPAc8PwYE_22GmNToooVh0BP4OapaMEJlJf8LKcENp_UCtyu0wccYoPs9DcFqKU_l8tRtefnBkz__cMuPbWXwbAV71--_uwDKOG_3MCoquaJMkaoWdWZPV9Zpr3QfXFRXnykmDJOa1ZgtQq4CciUHB0FF62Cy0OZQm1Tr3b-G_AkC_L4l</recordid><startdate>20090605</startdate><enddate>20090605</enddate><creator>Li, Zhaoyong</creator><creator>Hassan, Mohammad Q.</creator><creator>Jafferji, Mohammed</creator><creator>Aqeilan, Rami I.</creator><creator>Garzon, Ramiro</creator><creator>Croce, Carlo M.</creator><creator>van Wijnen, Andre J.</creator><creator>Stein, Janet L.</creator><creator>Stein, Gary S.</creator><creator>Lian, Jane B.</creator><general>Elsevier Inc</general><general>American Society for Biochemistry and Molecular Biology</general><scope>6I.</scope><scope>AAFTH</scope><scope>FBQ</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090605</creationdate><title>Biological Functions of miR-29b Contribute to Positive Regulation of Osteoblast Differentiation</title><author>Li, Zhaoyong ; Hassan, Mohammad Q. ; Jafferji, Mohammed ; Aqeilan, Rami I. ; Garzon, Ramiro ; Croce, Carlo M. ; van Wijnen, Andre J. ; Stein, Janet L. ; Stein, Gary S. ; Lian, Jane B.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c587t-453cf74bb33659379c87fdd44011194336da8ef1b74aa732eb2724cc2d4783113</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>3' Untranslated Regions - genetics</topic><topic>3T3 Cells</topic><topic>Animals</topic><topic>Blotting, Western</topic><topic>Cell Differentiation</topic><topic>DNA Primers</topic><topic>Gene Expression Profiling</topic><topic>Mice</topic><topic>MicroRNAs - genetics</topic><topic>Osteoblasts - cytology</topic><topic>Plasmids</topic><topic>Rats</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>RNA-Mediated Regulation and Noncoding RNAs</topic><topic>Transfection</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Zhaoyong</creatorcontrib><creatorcontrib>Hassan, Mohammad Q.</creatorcontrib><creatorcontrib>Jafferji, Mohammed</creatorcontrib><creatorcontrib>Aqeilan, Rami I.</creatorcontrib><creatorcontrib>Garzon, Ramiro</creatorcontrib><creatorcontrib>Croce, Carlo M.</creatorcontrib><creatorcontrib>van Wijnen, Andre J.</creatorcontrib><creatorcontrib>Stein, Janet L.</creatorcontrib><creatorcontrib>Stein, Gary S.</creatorcontrib><creatorcontrib>Lian, Jane B.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>AGRIS</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>The Journal of biological chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Zhaoyong</au><au>Hassan, Mohammad Q.</au><au>Jafferji, Mohammed</au><au>Aqeilan, Rami I.</au><au>Garzon, Ramiro</au><au>Croce, Carlo M.</au><au>van Wijnen, Andre J.</au><au>Stein, Janet L.</au><au>Stein, Gary S.</au><au>Lian, Jane B.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Biological Functions of miR-29b Contribute to Positive Regulation of Osteoblast Differentiation</atitle><jtitle>The Journal of biological chemistry</jtitle><addtitle>J Biol Chem</addtitle><date>2009-06-05</date><risdate>2009</risdate><volume>284</volume><issue>23</issue><spage>15676</spage><epage>15684</epage><pages>15676-15684</pages><issn>0021-9258</issn><eissn>1083-351X</eissn><abstract>Bone tissue arises from mesenchymal cells induced into the osteoblast lineage by essential transcription factors and signaling cascades. MicroRNAs regulate biological processes by binding to mRNA 3′-untranslated region (UTR) sequences to attenuate protein synthesis. Here we performed microRNA profiling and identified miRs that are up-regulated through stages of osteoblast differentiation. Among these are the miR-29, miR-let-7, and miR-26 families that target many collagens and extracellular matrix proteins. We find that miR-29b supports osteoblast differentiation through several mechanisms. miR-29b decreased and anti-miR-29b increased activity of COL1A1, COL5A3, and COL4A2 3′-UTR sequences in reporter assays, as well as endogenous gene expression. These results support a mechanism for regulating collagen protein accumulation during the mineralization stage when miR-29b reaches peak levels. We propose that this mechanism prevents fibrosis and facilitates mineral deposition. Our studies further demonstrate that miR-29b promotes osteogenesis by directly down-regulating known inhibitors of osteoblast differentiation, HDAC4, TGFβ3, ACVR2A, CTNNBIP1, and DUSP2 proteins through binding to target 3′-UTR sequences in their mRNAs. Thus, miR-29b is a key regulator of development of the osteoblast phenotype by targeting anti-osteogenic factors and modulating bone extracellular matrix proteins.</abstract><cop>United States</cop><pub>Elsevier Inc</pub><pmid>19342382</pmid><doi>10.1074/jbc.M809787200</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0021-9258 |
ispartof | The Journal of biological chemistry, 2009-06, Vol.284 (23), p.15676-15684 |
issn | 0021-9258 1083-351X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2708864 |
source | MEDLINE; Elektronische Zeitschriftenbibliothek - Frei zugängliche E-Journals; PubMed Central; Alma/SFX Local Collection |
subjects | 3' Untranslated Regions - genetics 3T3 Cells Animals Blotting, Western Cell Differentiation DNA Primers Gene Expression Profiling Mice MicroRNAs - genetics Osteoblasts - cytology Plasmids Rats Reverse Transcriptase Polymerase Chain Reaction RNA, Messenger - genetics RNA-Mediated Regulation and Noncoding RNAs Transfection |
title | Biological Functions of miR-29b Contribute to Positive Regulation of Osteoblast Differentiation |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T12%3A08%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Biological%20Functions%20of%20miR-29b%20Contribute%20to%20Positive%20Regulation%20of%20Osteoblast%20Differentiation&rft.jtitle=The%20Journal%20of%20biological%20chemistry&rft.au=Li,%20Zhaoyong&rft.date=2009-06-05&rft.volume=284&rft.issue=23&rft.spage=15676&rft.epage=15684&rft.pages=15676-15684&rft.issn=0021-9258&rft.eissn=1083-351X&rft_id=info:doi/10.1074/jbc.M809787200&rft_dat=%3Cproquest_pubme%3E67312858%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=21094268&rft_id=info:pmid/19342382&rft_els_id=S0021925820425438&rfr_iscdi=true |