Using affinity chromatography to engineer and characterize pH‐dependent protein switches

Conformational changes play important roles in the regulation of many enzymatic reactions. Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into prote...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Protein science 2009-01, Vol.18 (1), p.217-228
Hauptverfasser: Sagermann, Martin, Chapleau, Richard R., DeLorimier, Elaine, Lei, Margarida
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 228
container_issue 1
container_start_page 217
container_title Protein science
container_volume 18
creator Sagermann, Martin
Chapleau, Richard R.
DeLorimier, Elaine
Lei, Margarida
description Conformational changes play important roles in the regulation of many enzymatic reactions. Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into proteins is envisioned to enable unprecedented control of chemical reactions and molecular assembly processes. We here study the structural effects of engineered ionizable residues in the core of the glutathione‐S‐transferase to convert this protein into a pH‐dependent allosteric protein. The underlying rational of these substitutions is that in the neutral state, an uncharged residue is compatible with the hydrophobic environment. In the charged state, however, the residue will invoke unfavorable interactions, which are likely to induce conformational changes that will affect the function of the enzyme. To test this hypothesis, we have engineered a single aspartate, cysteine, or histidine residue at a distance from the active site into the protein. All of the mutations exhibit a dramatic effect on the protein's affinity to bind glutathione. Whereas the aspartate or histidine mutations result in permanently nonbinding or binding versions of the protein, respectively, mutant GST50C exhibits distinct pH‐dependent GSH‐binding affinity. The crystal structures of the mutant protein GST50C under ionizing and nonionizing conditions reveal the recruitment of water molecules into the hydrophobic core to produce conformational changes that influence the protein's active site. The methodology described here to create and characterize engineered allosteric proteins through affinity chromatography may lead to a general approach to engineer effector‐specific allostery into a protein structure.
doi_str_mv 10.1002/pro.23
format Article
fullrecord <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2708033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PRO23</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4643-5f1ef90cc1812757586ea116932153d4a9df6302f0cf4b16b5a76746af9e069b3</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRbK36CJKV4CJ1fpJJZiNIUSsUKmJB3ITJ5E460s6ESbTElY_gM_okprT4s3B1uZxzv3s4CB0TPCQY0_PKuyFlO6hPIi7CVPDHXdTHgpMwZTztoYO6fsYYR4SyfdQjgiQJ43EfPc1qY8tAam2sadpAzb1bysaVXlbzNmhcALY0FsAH0hadLL1UDXjzBkE1_nz_KKACW4Btgi5CA8YG9co0ag71IdrTclHD0XYO0Oz66mE0DifTm9vR5SRUEY9YGGsCWmClSEpoEidxykESwgWjJGZFJEWhOcNUY6WjnPA8lglPIi61AMxFzgboYsOtXvIlFKrL4uUiq7xZSt9mTprsr2LNPCvda0YTnGLGOsDpBqC8q2sP-vuW4Gzdbre7jK6NJ78__di2dXaGs41hZRbQ_oPJ7u6nHewLnRyGfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using affinity chromatography to engineer and characterize pH‐dependent protein switches</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sagermann, Martin ; Chapleau, Richard R. ; DeLorimier, Elaine ; Lei, Margarida</creator><creatorcontrib>Sagermann, Martin ; Chapleau, Richard R. ; DeLorimier, Elaine ; Lei, Margarida</creatorcontrib><description>Conformational changes play important roles in the regulation of many enzymatic reactions. Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into proteins is envisioned to enable unprecedented control of chemical reactions and molecular assembly processes. We here study the structural effects of engineered ionizable residues in the core of the glutathione‐S‐transferase to convert this protein into a pH‐dependent allosteric protein. The underlying rational of these substitutions is that in the neutral state, an uncharged residue is compatible with the hydrophobic environment. In the charged state, however, the residue will invoke unfavorable interactions, which are likely to induce conformational changes that will affect the function of the enzyme. To test this hypothesis, we have engineered a single aspartate, cysteine, or histidine residue at a distance from the active site into the protein. All of the mutations exhibit a dramatic effect on the protein's affinity to bind glutathione. Whereas the aspartate or histidine mutations result in permanently nonbinding or binding versions of the protein, respectively, mutant GST50C exhibits distinct pH‐dependent GSH‐binding affinity. The crystal structures of the mutant protein GST50C under ionizing and nonionizing conditions reveal the recruitment of water molecules into the hydrophobic core to produce conformational changes that influence the protein's active site. The methodology described here to create and characterize engineered allosteric proteins through affinity chromatography may lead to a general approach to engineer effector‐specific allostery into a protein structure.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.23</identifier><identifier>PMID: 19177365</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Allosteric Regulation - physiology ; allostery ; Amino Acid Sequence - physiology ; Amino Acid Substitution - physiology ; Animals ; Chromatography, Affinity - methods ; Circular Dichroism ; conformational switches ; Crystallography, X-Ray ; dynamics ; Escherichia coli - metabolism ; Glutathione - metabolism ; Glutathione Transferase - chemistry ; Glutathione Transferase - genetics ; Glutathione Transferase - metabolism ; Hydrogen-Ion Concentration ; Models, Molecular ; Mutation - physiology ; pH sensor ; Protein Binding - physiology ; protein design ; Protein Engineering ; Protein Structure, Tertiary - physiology ; Schistosoma japonicum - enzymology ; Schistosoma japonicum - genetics ; Water - metabolism</subject><ispartof>Protein science, 2009-01, Vol.18 (1), p.217-228</ispartof><rights>Copyright © 2008 The Protein Society</rights><rights>Copyright © 2009 The Protein Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4643-5f1ef90cc1812757586ea116932153d4a9df6302f0cf4b16b5a76746af9e069b3</citedby><cites>FETCH-LOGICAL-c4643-5f1ef90cc1812757586ea116932153d4a9df6302f0cf4b16b5a76746af9e069b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708033/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708033/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27923,27924,45573,45574,46408,46832,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19177365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sagermann, Martin</creatorcontrib><creatorcontrib>Chapleau, Richard R.</creatorcontrib><creatorcontrib>DeLorimier, Elaine</creatorcontrib><creatorcontrib>Lei, Margarida</creatorcontrib><title>Using affinity chromatography to engineer and characterize pH‐dependent protein switches</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Conformational changes play important roles in the regulation of many enzymatic reactions. Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into proteins is envisioned to enable unprecedented control of chemical reactions and molecular assembly processes. We here study the structural effects of engineered ionizable residues in the core of the glutathione‐S‐transferase to convert this protein into a pH‐dependent allosteric protein. The underlying rational of these substitutions is that in the neutral state, an uncharged residue is compatible with the hydrophobic environment. In the charged state, however, the residue will invoke unfavorable interactions, which are likely to induce conformational changes that will affect the function of the enzyme. To test this hypothesis, we have engineered a single aspartate, cysteine, or histidine residue at a distance from the active site into the protein. All of the mutations exhibit a dramatic effect on the protein's affinity to bind glutathione. Whereas the aspartate or histidine mutations result in permanently nonbinding or binding versions of the protein, respectively, mutant GST50C exhibits distinct pH‐dependent GSH‐binding affinity. The crystal structures of the mutant protein GST50C under ionizing and nonionizing conditions reveal the recruitment of water molecules into the hydrophobic core to produce conformational changes that influence the protein's active site. The methodology described here to create and characterize engineered allosteric proteins through affinity chromatography may lead to a general approach to engineer effector‐specific allostery into a protein structure.</description><subject>Allosteric Regulation - physiology</subject><subject>allostery</subject><subject>Amino Acid Sequence - physiology</subject><subject>Amino Acid Substitution - physiology</subject><subject>Animals</subject><subject>Chromatography, Affinity - methods</subject><subject>Circular Dichroism</subject><subject>conformational switches</subject><subject>Crystallography, X-Ray</subject><subject>dynamics</subject><subject>Escherichia coli - metabolism</subject><subject>Glutathione - metabolism</subject><subject>Glutathione Transferase - chemistry</subject><subject>Glutathione Transferase - genetics</subject><subject>Glutathione Transferase - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Models, Molecular</subject><subject>Mutation - physiology</subject><subject>pH sensor</subject><subject>Protein Binding - physiology</subject><subject>protein design</subject><subject>Protein Engineering</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Schistosoma japonicum - enzymology</subject><subject>Schistosoma japonicum - genetics</subject><subject>Water - metabolism</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1Kw0AUhQdRbK36CJKV4CJ1fpJJZiNIUSsUKmJB3ITJ5E460s6ESbTElY_gM_okprT4s3B1uZxzv3s4CB0TPCQY0_PKuyFlO6hPIi7CVPDHXdTHgpMwZTztoYO6fsYYR4SyfdQjgiQJ43EfPc1qY8tAam2sadpAzb1bysaVXlbzNmhcALY0FsAH0hadLL1UDXjzBkE1_nz_KKACW4Btgi5CA8YG9co0ag71IdrTclHD0XYO0Oz66mE0DifTm9vR5SRUEY9YGGsCWmClSEpoEidxykESwgWjJGZFJEWhOcNUY6WjnPA8lglPIi61AMxFzgboYsOtXvIlFKrL4uUiq7xZSt9mTprsr2LNPCvda0YTnGLGOsDpBqC8q2sP-vuW4Gzdbre7jK6NJ78__di2dXaGs41hZRbQ_oPJ7u6nHewLnRyGfQ</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Sagermann, Martin</creator><creator>Chapleau, Richard R.</creator><creator>DeLorimier, Elaine</creator><creator>Lei, Margarida</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>200901</creationdate><title>Using affinity chromatography to engineer and characterize pH‐dependent protein switches</title><author>Sagermann, Martin ; Chapleau, Richard R. ; DeLorimier, Elaine ; Lei, Margarida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4643-5f1ef90cc1812757586ea116932153d4a9df6302f0cf4b16b5a76746af9e069b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Allosteric Regulation - physiology</topic><topic>allostery</topic><topic>Amino Acid Sequence - physiology</topic><topic>Amino Acid Substitution - physiology</topic><topic>Animals</topic><topic>Chromatography, Affinity - methods</topic><topic>Circular Dichroism</topic><topic>conformational switches</topic><topic>Crystallography, X-Ray</topic><topic>dynamics</topic><topic>Escherichia coli - metabolism</topic><topic>Glutathione - metabolism</topic><topic>Glutathione Transferase - chemistry</topic><topic>Glutathione Transferase - genetics</topic><topic>Glutathione Transferase - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Models, Molecular</topic><topic>Mutation - physiology</topic><topic>pH sensor</topic><topic>Protein Binding - physiology</topic><topic>protein design</topic><topic>Protein Engineering</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Schistosoma japonicum - enzymology</topic><topic>Schistosoma japonicum - genetics</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sagermann, Martin</creatorcontrib><creatorcontrib>Chapleau, Richard R.</creatorcontrib><creatorcontrib>DeLorimier, Elaine</creatorcontrib><creatorcontrib>Lei, Margarida</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sagermann, Martin</au><au>Chapleau, Richard R.</au><au>DeLorimier, Elaine</au><au>Lei, Margarida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using affinity chromatography to engineer and characterize pH‐dependent protein switches</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2009-01</date><risdate>2009</risdate><volume>18</volume><issue>1</issue><spage>217</spage><epage>228</epage><pages>217-228</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Conformational changes play important roles in the regulation of many enzymatic reactions. Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into proteins is envisioned to enable unprecedented control of chemical reactions and molecular assembly processes. We here study the structural effects of engineered ionizable residues in the core of the glutathione‐S‐transferase to convert this protein into a pH‐dependent allosteric protein. The underlying rational of these substitutions is that in the neutral state, an uncharged residue is compatible with the hydrophobic environment. In the charged state, however, the residue will invoke unfavorable interactions, which are likely to induce conformational changes that will affect the function of the enzyme. To test this hypothesis, we have engineered a single aspartate, cysteine, or histidine residue at a distance from the active site into the protein. All of the mutations exhibit a dramatic effect on the protein's affinity to bind glutathione. Whereas the aspartate or histidine mutations result in permanently nonbinding or binding versions of the protein, respectively, mutant GST50C exhibits distinct pH‐dependent GSH‐binding affinity. The crystal structures of the mutant protein GST50C under ionizing and nonionizing conditions reveal the recruitment of water molecules into the hydrophobic core to produce conformational changes that influence the protein's active site. The methodology described here to create and characterize engineered allosteric proteins through affinity chromatography may lead to a general approach to engineer effector‐specific allostery into a protein structure.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19177365</pmid><doi>10.1002/pro.23</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0961-8368
ispartof Protein science, 2009-01, Vol.18 (1), p.217-228
issn 0961-8368
1469-896X
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2708033
source MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry
subjects Allosteric Regulation - physiology
allostery
Amino Acid Sequence - physiology
Amino Acid Substitution - physiology
Animals
Chromatography, Affinity - methods
Circular Dichroism
conformational switches
Crystallography, X-Ray
dynamics
Escherichia coli - metabolism
Glutathione - metabolism
Glutathione Transferase - chemistry
Glutathione Transferase - genetics
Glutathione Transferase - metabolism
Hydrogen-Ion Concentration
Models, Molecular
Mutation - physiology
pH sensor
Protein Binding - physiology
protein design
Protein Engineering
Protein Structure, Tertiary - physiology
Schistosoma japonicum - enzymology
Schistosoma japonicum - genetics
Water - metabolism
title Using affinity chromatography to engineer and characterize pH‐dependent protein switches
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20affinity%20chromatography%20to%20engineer%20and%20characterize%20pH%E2%80%90dependent%20protein%20switches&rft.jtitle=Protein%20science&rft.au=Sagermann,%20Martin&rft.date=2009-01&rft.volume=18&rft.issue=1&rft.spage=217&rft.epage=228&rft.pages=217-228&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.23&rft_dat=%3Cwiley_pubme%3EPRO23%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19177365&rfr_iscdi=true