Using affinity chromatography to engineer and characterize pH‐dependent protein switches
Conformational changes play important roles in the regulation of many enzymatic reactions. Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into prote...
Gespeichert in:
Veröffentlicht in: | Protein science 2009-01, Vol.18 (1), p.217-228 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 228 |
---|---|
container_issue | 1 |
container_start_page | 217 |
container_title | Protein science |
container_volume | 18 |
creator | Sagermann, Martin Chapleau, Richard R. DeLorimier, Elaine Lei, Margarida |
description | Conformational changes play important roles in the regulation of many enzymatic reactions. Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into proteins is envisioned to enable unprecedented control of chemical reactions and molecular assembly processes. We here study the structural effects of engineered ionizable residues in the core of the glutathione‐S‐transferase to convert this protein into a pH‐dependent allosteric protein. The underlying rational of these substitutions is that in the neutral state, an uncharged residue is compatible with the hydrophobic environment. In the charged state, however, the residue will invoke unfavorable interactions, which are likely to induce conformational changes that will affect the function of the enzyme. To test this hypothesis, we have engineered a single aspartate, cysteine, or histidine residue at a distance from the active site into the protein. All of the mutations exhibit a dramatic effect on the protein's affinity to bind glutathione. Whereas the aspartate or histidine mutations result in permanently nonbinding or binding versions of the protein, respectively, mutant GST50C exhibits distinct pH‐dependent GSH‐binding affinity. The crystal structures of the mutant protein GST50C under ionizing and nonionizing conditions reveal the recruitment of water molecules into the hydrophobic core to produce conformational changes that influence the protein's active site. The methodology described here to create and characterize engineered allosteric proteins through affinity chromatography may lead to a general approach to engineer effector‐specific allostery into a protein structure. |
doi_str_mv | 10.1002/pro.23 |
format | Article |
fullrecord | <record><control><sourceid>wiley_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2708033</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>PRO23</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4643-5f1ef90cc1812757586ea116932153d4a9df6302f0cf4b16b5a76746af9e069b3</originalsourceid><addsrcrecordid>eNp1kM1Kw0AUhQdRbK36CJKV4CJ1fpJJZiNIUSsUKmJB3ITJ5E460s6ESbTElY_gM_okprT4s3B1uZxzv3s4CB0TPCQY0_PKuyFlO6hPIi7CVPDHXdTHgpMwZTztoYO6fsYYR4SyfdQjgiQJ43EfPc1qY8tAam2sadpAzb1bysaVXlbzNmhcALY0FsAH0hadLL1UDXjzBkE1_nz_KKACW4Btgi5CA8YG9co0ag71IdrTclHD0XYO0Oz66mE0DifTm9vR5SRUEY9YGGsCWmClSEpoEidxykESwgWjJGZFJEWhOcNUY6WjnPA8lglPIi61AMxFzgboYsOtXvIlFKrL4uUiq7xZSt9mTprsr2LNPCvda0YTnGLGOsDpBqC8q2sP-vuW4Gzdbre7jK6NJ78__di2dXaGs41hZRbQ_oPJ7u6nHewLnRyGfQ</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Using affinity chromatography to engineer and characterize pH‐dependent protein switches</title><source>MEDLINE</source><source>Wiley Online Library Journals Frontfile Complete</source><source>Wiley Free Content</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><creator>Sagermann, Martin ; Chapleau, Richard R. ; DeLorimier, Elaine ; Lei, Margarida</creator><creatorcontrib>Sagermann, Martin ; Chapleau, Richard R. ; DeLorimier, Elaine ; Lei, Margarida</creatorcontrib><description>Conformational changes play important roles in the regulation of many enzymatic reactions. Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into proteins is envisioned to enable unprecedented control of chemical reactions and molecular assembly processes. We here study the structural effects of engineered ionizable residues in the core of the glutathione‐S‐transferase to convert this protein into a pH‐dependent allosteric protein. The underlying rational of these substitutions is that in the neutral state, an uncharged residue is compatible with the hydrophobic environment. In the charged state, however, the residue will invoke unfavorable interactions, which are likely to induce conformational changes that will affect the function of the enzyme. To test this hypothesis, we have engineered a single aspartate, cysteine, or histidine residue at a distance from the active site into the protein. All of the mutations exhibit a dramatic effect on the protein's affinity to bind glutathione. Whereas the aspartate or histidine mutations result in permanently nonbinding or binding versions of the protein, respectively, mutant GST50C exhibits distinct pH‐dependent GSH‐binding affinity. The crystal structures of the mutant protein GST50C under ionizing and nonionizing conditions reveal the recruitment of water molecules into the hydrophobic core to produce conformational changes that influence the protein's active site. The methodology described here to create and characterize engineered allosteric proteins through affinity chromatography may lead to a general approach to engineer effector‐specific allostery into a protein structure.</description><identifier>ISSN: 0961-8368</identifier><identifier>EISSN: 1469-896X</identifier><identifier>DOI: 10.1002/pro.23</identifier><identifier>PMID: 19177365</identifier><language>eng</language><publisher>Hoboken: Wiley Subscription Services, Inc., A Wiley Company</publisher><subject>Allosteric Regulation - physiology ; allostery ; Amino Acid Sequence - physiology ; Amino Acid Substitution - physiology ; Animals ; Chromatography, Affinity - methods ; Circular Dichroism ; conformational switches ; Crystallography, X-Ray ; dynamics ; Escherichia coli - metabolism ; Glutathione - metabolism ; Glutathione Transferase - chemistry ; Glutathione Transferase - genetics ; Glutathione Transferase - metabolism ; Hydrogen-Ion Concentration ; Models, Molecular ; Mutation - physiology ; pH sensor ; Protein Binding - physiology ; protein design ; Protein Engineering ; Protein Structure, Tertiary - physiology ; Schistosoma japonicum - enzymology ; Schistosoma japonicum - genetics ; Water - metabolism</subject><ispartof>Protein science, 2009-01, Vol.18 (1), p.217-228</ispartof><rights>Copyright © 2008 The Protein Society</rights><rights>Copyright © 2009 The Protein Society 2009</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c4643-5f1ef90cc1812757586ea116932153d4a9df6302f0cf4b16b5a76746af9e069b3</citedby><cites>FETCH-LOGICAL-c4643-5f1ef90cc1812757586ea116932153d4a9df6302f0cf4b16b5a76746af9e069b3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708033/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2708033/$$EHTML$$P50$$Gpubmedcentral$$H</linktohtml><link.rule.ids>230,314,727,780,784,885,1417,1433,27923,27924,45573,45574,46408,46832,53790,53792</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19177365$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sagermann, Martin</creatorcontrib><creatorcontrib>Chapleau, Richard R.</creatorcontrib><creatorcontrib>DeLorimier, Elaine</creatorcontrib><creatorcontrib>Lei, Margarida</creatorcontrib><title>Using affinity chromatography to engineer and characterize pH‐dependent protein switches</title><title>Protein science</title><addtitle>Protein Sci</addtitle><description>Conformational changes play important roles in the regulation of many enzymatic reactions. Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into proteins is envisioned to enable unprecedented control of chemical reactions and molecular assembly processes. We here study the structural effects of engineered ionizable residues in the core of the glutathione‐S‐transferase to convert this protein into a pH‐dependent allosteric protein. The underlying rational of these substitutions is that in the neutral state, an uncharged residue is compatible with the hydrophobic environment. In the charged state, however, the residue will invoke unfavorable interactions, which are likely to induce conformational changes that will affect the function of the enzyme. To test this hypothesis, we have engineered a single aspartate, cysteine, or histidine residue at a distance from the active site into the protein. All of the mutations exhibit a dramatic effect on the protein's affinity to bind glutathione. Whereas the aspartate or histidine mutations result in permanently nonbinding or binding versions of the protein, respectively, mutant GST50C exhibits distinct pH‐dependent GSH‐binding affinity. The crystal structures of the mutant protein GST50C under ionizing and nonionizing conditions reveal the recruitment of water molecules into the hydrophobic core to produce conformational changes that influence the protein's active site. The methodology described here to create and characterize engineered allosteric proteins through affinity chromatography may lead to a general approach to engineer effector‐specific allostery into a protein structure.</description><subject>Allosteric Regulation - physiology</subject><subject>allostery</subject><subject>Amino Acid Sequence - physiology</subject><subject>Amino Acid Substitution - physiology</subject><subject>Animals</subject><subject>Chromatography, Affinity - methods</subject><subject>Circular Dichroism</subject><subject>conformational switches</subject><subject>Crystallography, X-Ray</subject><subject>dynamics</subject><subject>Escherichia coli - metabolism</subject><subject>Glutathione - metabolism</subject><subject>Glutathione Transferase - chemistry</subject><subject>Glutathione Transferase - genetics</subject><subject>Glutathione Transferase - metabolism</subject><subject>Hydrogen-Ion Concentration</subject><subject>Models, Molecular</subject><subject>Mutation - physiology</subject><subject>pH sensor</subject><subject>Protein Binding - physiology</subject><subject>protein design</subject><subject>Protein Engineering</subject><subject>Protein Structure, Tertiary - physiology</subject><subject>Schistosoma japonicum - enzymology</subject><subject>Schistosoma japonicum - genetics</subject><subject>Water - metabolism</subject><issn>0961-8368</issn><issn>1469-896X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNp1kM1Kw0AUhQdRbK36CJKV4CJ1fpJJZiNIUSsUKmJB3ITJ5E460s6ESbTElY_gM_okprT4s3B1uZxzv3s4CB0TPCQY0_PKuyFlO6hPIi7CVPDHXdTHgpMwZTztoYO6fsYYR4SyfdQjgiQJ43EfPc1qY8tAam2sadpAzb1bysaVXlbzNmhcALY0FsAH0hadLL1UDXjzBkE1_nz_KKACW4Btgi5CA8YG9co0ag71IdrTclHD0XYO0Oz66mE0DifTm9vR5SRUEY9YGGsCWmClSEpoEidxykESwgWjJGZFJEWhOcNUY6WjnPA8lglPIi61AMxFzgboYsOtXvIlFKrL4uUiq7xZSt9mTprsr2LNPCvda0YTnGLGOsDpBqC8q2sP-vuW4Gzdbre7jK6NJ78__di2dXaGs41hZRbQ_oPJ7u6nHewLnRyGfQ</recordid><startdate>200901</startdate><enddate>200901</enddate><creator>Sagermann, Martin</creator><creator>Chapleau, Richard R.</creator><creator>DeLorimier, Elaine</creator><creator>Lei, Margarida</creator><general>Wiley Subscription Services, Inc., A Wiley Company</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>5PM</scope></search><sort><creationdate>200901</creationdate><title>Using affinity chromatography to engineer and characterize pH‐dependent protein switches</title><author>Sagermann, Martin ; Chapleau, Richard R. ; DeLorimier, Elaine ; Lei, Margarida</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4643-5f1ef90cc1812757586ea116932153d4a9df6302f0cf4b16b5a76746af9e069b3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Allosteric Regulation - physiology</topic><topic>allostery</topic><topic>Amino Acid Sequence - physiology</topic><topic>Amino Acid Substitution - physiology</topic><topic>Animals</topic><topic>Chromatography, Affinity - methods</topic><topic>Circular Dichroism</topic><topic>conformational switches</topic><topic>Crystallography, X-Ray</topic><topic>dynamics</topic><topic>Escherichia coli - metabolism</topic><topic>Glutathione - metabolism</topic><topic>Glutathione Transferase - chemistry</topic><topic>Glutathione Transferase - genetics</topic><topic>Glutathione Transferase - metabolism</topic><topic>Hydrogen-Ion Concentration</topic><topic>Models, Molecular</topic><topic>Mutation - physiology</topic><topic>pH sensor</topic><topic>Protein Binding - physiology</topic><topic>protein design</topic><topic>Protein Engineering</topic><topic>Protein Structure, Tertiary - physiology</topic><topic>Schistosoma japonicum - enzymology</topic><topic>Schistosoma japonicum - genetics</topic><topic>Water - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sagermann, Martin</creatorcontrib><creatorcontrib>Chapleau, Richard R.</creatorcontrib><creatorcontrib>DeLorimier, Elaine</creatorcontrib><creatorcontrib>Lei, Margarida</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Protein science</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sagermann, Martin</au><au>Chapleau, Richard R.</au><au>DeLorimier, Elaine</au><au>Lei, Margarida</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Using affinity chromatography to engineer and characterize pH‐dependent protein switches</atitle><jtitle>Protein science</jtitle><addtitle>Protein Sci</addtitle><date>2009-01</date><risdate>2009</risdate><volume>18</volume><issue>1</issue><spage>217</spage><epage>228</epage><pages>217-228</pages><issn>0961-8368</issn><eissn>1469-896X</eissn><abstract>Conformational changes play important roles in the regulation of many enzymatic reactions. Specific motions of side chains, secondary structures, or entire protein domains facilitate the precise control of substrate selection, binding, and catalysis. Likewise, the engineering of allostery into proteins is envisioned to enable unprecedented control of chemical reactions and molecular assembly processes. We here study the structural effects of engineered ionizable residues in the core of the glutathione‐S‐transferase to convert this protein into a pH‐dependent allosteric protein. The underlying rational of these substitutions is that in the neutral state, an uncharged residue is compatible with the hydrophobic environment. In the charged state, however, the residue will invoke unfavorable interactions, which are likely to induce conformational changes that will affect the function of the enzyme. To test this hypothesis, we have engineered a single aspartate, cysteine, or histidine residue at a distance from the active site into the protein. All of the mutations exhibit a dramatic effect on the protein's affinity to bind glutathione. Whereas the aspartate or histidine mutations result in permanently nonbinding or binding versions of the protein, respectively, mutant GST50C exhibits distinct pH‐dependent GSH‐binding affinity. The crystal structures of the mutant protein GST50C under ionizing and nonionizing conditions reveal the recruitment of water molecules into the hydrophobic core to produce conformational changes that influence the protein's active site. The methodology described here to create and characterize engineered allosteric proteins through affinity chromatography may lead to a general approach to engineer effector‐specific allostery into a protein structure.</abstract><cop>Hoboken</cop><pub>Wiley Subscription Services, Inc., A Wiley Company</pub><pmid>19177365</pmid><doi>10.1002/pro.23</doi><tpages>12</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0961-8368 |
ispartof | Protein science, 2009-01, Vol.18 (1), p.217-228 |
issn | 0961-8368 1469-896X |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2708033 |
source | MEDLINE; Wiley Online Library Journals Frontfile Complete; Wiley Free Content; EZB-FREE-00999 freely available EZB journals; PubMed Central; Free Full-Text Journals in Chemistry |
subjects | Allosteric Regulation - physiology allostery Amino Acid Sequence - physiology Amino Acid Substitution - physiology Animals Chromatography, Affinity - methods Circular Dichroism conformational switches Crystallography, X-Ray dynamics Escherichia coli - metabolism Glutathione - metabolism Glutathione Transferase - chemistry Glutathione Transferase - genetics Glutathione Transferase - metabolism Hydrogen-Ion Concentration Models, Molecular Mutation - physiology pH sensor Protein Binding - physiology protein design Protein Engineering Protein Structure, Tertiary - physiology Schistosoma japonicum - enzymology Schistosoma japonicum - genetics Water - metabolism |
title | Using affinity chromatography to engineer and characterize pH‐dependent protein switches |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T21%3A28%3A33IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-wiley_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Using%20affinity%20chromatography%20to%20engineer%20and%20characterize%20pH%E2%80%90dependent%20protein%20switches&rft.jtitle=Protein%20science&rft.au=Sagermann,%20Martin&rft.date=2009-01&rft.volume=18&rft.issue=1&rft.spage=217&rft.epage=228&rft.pages=217-228&rft.issn=0961-8368&rft.eissn=1469-896X&rft_id=info:doi/10.1002/pro.23&rft_dat=%3Cwiley_pubme%3EPRO23%3C/wiley_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_id=info:pmid/19177365&rfr_iscdi=true |