Multiple Synostoses Syndrome Is Due to a Missense Mutation in Exon 2 of FGF9 Gene

Fibroblast growth factors (FGFs) play diverse roles in several developmental processes. Mutations leading to deregulated FGF signaling can cause human skeletal dysplasias and cancer. 1,2 Here we report a missense mutation (Ser99Asp) in exon 2 of FGF9 in 12 patients with multiple synostoses syndrome...

Ausführliche Beschreibung

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:American journal of human genetics 2009-07, Vol.85 (1), p.53-63
Hauptverfasser: Wu, Xiao-lin, Gu, Ming-min, Huang, Lei, Liu, Xue-song, Zhang, Hong-xin, Ding, Xiao-yi, Xu, Jian-qiang, Cui, Bin, Wang, Long, Lu, Shun-yuan, Chen, Xiao-yi, Zhang, Hai-guo, Huang, Wei, Yuan, Wen-tao, Yang, Jiang-ming, Gu, Qun, Fei, Jian, Chen, Zhu, Yuan, Zhi-min, Wang, Zhu-gang
Format: Artikel
Sprache:eng
Schlagworte:
Online-Zugang:Volltext
Tags: Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
container_end_page 63
container_issue 1
container_start_page 53
container_title American journal of human genetics
container_volume 85
creator Wu, Xiao-lin
Gu, Ming-min
Huang, Lei
Liu, Xue-song
Zhang, Hong-xin
Ding, Xiao-yi
Xu, Jian-qiang
Cui, Bin
Wang, Long
Lu, Shun-yuan
Chen, Xiao-yi
Zhang, Hai-guo
Huang, Wei
Yuan, Wen-tao
Yang, Jiang-ming
Gu, Qun
Fei, Jian
Chen, Zhu
Yuan, Zhi-min
Wang, Zhu-gang
description Fibroblast growth factors (FGFs) play diverse roles in several developmental processes. Mutations leading to deregulated FGF signaling can cause human skeletal dysplasias and cancer. 1,2 Here we report a missense mutation (Ser99Asp) in exon 2 of FGF9 in 12 patients with multiple synostoses syndrome (SYNS) in a large Chinese family. In vitro studies demonstrate that FGF9 S99N is expressed and secreted as efficiently as wild-type FGF9 in transfected cells. However, FGF9 S99N induces compromised chondrocyte proliferation and differentiation, which is accompanied by enhanced osteogenic differentiation and matrix mineralization of bone marrow-derived mesenchymal stem cells (BMSCs). Biochemical analysis reveals that S99N mutation in FGF9 leads to significantly impaired FGF signaling, as evidenced by diminished activity of Erk1/2 pathway and decreased β-catenin and c-Myc expression when compared with wild-type FGF9. Importantly, the binding of FGF9 S99N to its receptor is severely impaired although the dimerization ability of mutant FGF9 itself or with wild-type FGF9 is not detectably affected, providing a basis for the defective FGFR signaling. Collectively, our data demonstrate a previously uncharacterized mutation in FGF9 as one of the causes of SYNS, implicating an important role of FGF9 in normal joint development.
doi_str_mv 10.1016/j.ajhg.2009.06.007
format Article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2706969</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0002929709002432</els_id><sourcerecordid>1786658751</sourcerecordid><originalsourceid>FETCH-LOGICAL-c541t-9272e03fe0fc66ddc8396caca55fd1c0e70dfb719f87faf2026c055c87297bce3</originalsourceid><addsrcrecordid>eNqFkd9rFDEQx4Mo9qz-Az5IEPTt1kl2N9mACFJ7Z6GHiPocctlJm2MvuSa7xf735ryj_njQpwnkM19m5kPIcwYVAybebCqzub6qOICqQFQA8gGZsbaWcyGgfUhmAMDniit5Qp7kvAFgrIP6MTlhqu1UA2xGPq-mYfS7AemXuxDzGDPm_bNPcYv0ItMPE9IxUkNXPmcMGelqGs3oY6A-0PPvpXIaHV0sF4ouMeBT8siZIeOzYz0l3xbnX88-zi8_LS_O3l_ObduwsYwlOULtEJwVou9tVythjTVt63pmASX0bi2Zcp10xnHgwkLb2k6WfdYW61Py7pC7m9Zb7C2GMZlB75LfmnSno_H6z5_gr_VVvNVcglBClYDXx4AUbybMo976bHEYTMA4ZS1kI5ns2H9BDqxuBHQFfPkXuIlTCuUKmjMlGEiQBeIHyKaYc0J3PzIDvfeqN3rvVe-9ahAafja9-H3ZXy1HkQV4dQRMtmZwyQTr8z3HmWy6Yr9wbw8cFjW3HpPO1mOw2PuEdtR99P-a4wctw8Al</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>219610707</pqid></control><display><type>article</type><title>Multiple Synostoses Syndrome Is Due to a Missense Mutation in Exon 2 of FGF9 Gene</title><source>MEDLINE</source><source>Cell Press Free Archives</source><source>Elsevier ScienceDirect Journals</source><source>EZB-FREE-00999 freely available EZB journals</source><source>PubMed Central</source><creator>Wu, Xiao-lin ; Gu, Ming-min ; Huang, Lei ; Liu, Xue-song ; Zhang, Hong-xin ; Ding, Xiao-yi ; Xu, Jian-qiang ; Cui, Bin ; Wang, Long ; Lu, Shun-yuan ; Chen, Xiao-yi ; Zhang, Hai-guo ; Huang, Wei ; Yuan, Wen-tao ; Yang, Jiang-ming ; Gu, Qun ; Fei, Jian ; Chen, Zhu ; Yuan, Zhi-min ; Wang, Zhu-gang</creator><creatorcontrib>Wu, Xiao-lin ; Gu, Ming-min ; Huang, Lei ; Liu, Xue-song ; Zhang, Hong-xin ; Ding, Xiao-yi ; Xu, Jian-qiang ; Cui, Bin ; Wang, Long ; Lu, Shun-yuan ; Chen, Xiao-yi ; Zhang, Hai-guo ; Huang, Wei ; Yuan, Wen-tao ; Yang, Jiang-ming ; Gu, Qun ; Fei, Jian ; Chen, Zhu ; Yuan, Zhi-min ; Wang, Zhu-gang</creatorcontrib><description>Fibroblast growth factors (FGFs) play diverse roles in several developmental processes. Mutations leading to deregulated FGF signaling can cause human skeletal dysplasias and cancer. 1,2 Here we report a missense mutation (Ser99Asp) in exon 2 of FGF9 in 12 patients with multiple synostoses syndrome (SYNS) in a large Chinese family. In vitro studies demonstrate that FGF9 S99N is expressed and secreted as efficiently as wild-type FGF9 in transfected cells. However, FGF9 S99N induces compromised chondrocyte proliferation and differentiation, which is accompanied by enhanced osteogenic differentiation and matrix mineralization of bone marrow-derived mesenchymal stem cells (BMSCs). Biochemical analysis reveals that S99N mutation in FGF9 leads to significantly impaired FGF signaling, as evidenced by diminished activity of Erk1/2 pathway and decreased β-catenin and c-Myc expression when compared with wild-type FGF9. Importantly, the binding of FGF9 S99N to its receptor is severely impaired although the dimerization ability of mutant FGF9 itself or with wild-type FGF9 is not detectably affected, providing a basis for the defective FGFR signaling. Collectively, our data demonstrate a previously uncharacterized mutation in FGF9 as one of the causes of SYNS, implicating an important role of FGF9 in normal joint development.</description><identifier>ISSN: 0002-9297</identifier><identifier>EISSN: 1537-6605</identifier><identifier>DOI: 10.1016/j.ajhg.2009.06.007</identifier><identifier>PMID: 19589401</identifier><identifier>CODEN: AJHGAG</identifier><language>eng</language><publisher>Cambridge, MA: Elsevier Inc</publisher><subject>Adolescent ; Adult ; Aged ; Amino Acid Sequence ; Animals ; Biochemistry ; Biological and medical sciences ; Bone marrow ; Cell growth ; Child ; Child, Preschool ; DNA Mutational Analysis ; Exons ; Female ; Fibroblast Growth Factor 9 - chemistry ; Fibroblast Growth Factor 9 - genetics ; Fundamental and applied biological sciences. Psychology ; General aspects. Genetic counseling ; Genes ; Genetics of eukaryotes. Biological and molecular evolution ; Humans ; Male ; Medical genetics ; Medical sciences ; Middle Aged ; Molecular and cellular biology ; Molecular Sequence Data ; Musculoskeletal system ; Mutation ; Mutation, Missense ; Pedigree ; Signal Transduction ; Stem cells ; Synostosis - genetics</subject><ispartof>American journal of human genetics, 2009-07, Vol.85 (1), p.53-63</ispartof><rights>2009 The American Society of Human Genetics</rights><rights>2009 INIST-CNRS</rights><rights>Copyright University of Chicago, acting through its Press Jul 10, 2009</rights><rights>2009 The American Society of Human Genetics. Published by Elsevier Ltd. All right reserved.. 2009 The American Society of Human Genetics</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c541t-9272e03fe0fc66ddc8396caca55fd1c0e70dfb719f87faf2026c055c87297bce3</citedby><cites>FETCH-LOGICAL-c541t-9272e03fe0fc66ddc8396caca55fd1c0e70dfb719f87faf2026c055c87297bce3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC2706969/pdf/$$EPDF$$P50$$Gpubmedcentral$$H</linktopdf><linktohtml>$$Uhttps://dx.doi.org/10.1016/j.ajhg.2009.06.007$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27904,27905,45975,53771,53773</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=21748118$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/19589401$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wu, Xiao-lin</creatorcontrib><creatorcontrib>Gu, Ming-min</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Liu, Xue-song</creatorcontrib><creatorcontrib>Zhang, Hong-xin</creatorcontrib><creatorcontrib>Ding, Xiao-yi</creatorcontrib><creatorcontrib>Xu, Jian-qiang</creatorcontrib><creatorcontrib>Cui, Bin</creatorcontrib><creatorcontrib>Wang, Long</creatorcontrib><creatorcontrib>Lu, Shun-yuan</creatorcontrib><creatorcontrib>Chen, Xiao-yi</creatorcontrib><creatorcontrib>Zhang, Hai-guo</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Yuan, Wen-tao</creatorcontrib><creatorcontrib>Yang, Jiang-ming</creatorcontrib><creatorcontrib>Gu, Qun</creatorcontrib><creatorcontrib>Fei, Jian</creatorcontrib><creatorcontrib>Chen, Zhu</creatorcontrib><creatorcontrib>Yuan, Zhi-min</creatorcontrib><creatorcontrib>Wang, Zhu-gang</creatorcontrib><title>Multiple Synostoses Syndrome Is Due to a Missense Mutation in Exon 2 of FGF9 Gene</title><title>American journal of human genetics</title><addtitle>Am J Hum Genet</addtitle><description>Fibroblast growth factors (FGFs) play diverse roles in several developmental processes. Mutations leading to deregulated FGF signaling can cause human skeletal dysplasias and cancer. 1,2 Here we report a missense mutation (Ser99Asp) in exon 2 of FGF9 in 12 patients with multiple synostoses syndrome (SYNS) in a large Chinese family. In vitro studies demonstrate that FGF9 S99N is expressed and secreted as efficiently as wild-type FGF9 in transfected cells. However, FGF9 S99N induces compromised chondrocyte proliferation and differentiation, which is accompanied by enhanced osteogenic differentiation and matrix mineralization of bone marrow-derived mesenchymal stem cells (BMSCs). Biochemical analysis reveals that S99N mutation in FGF9 leads to significantly impaired FGF signaling, as evidenced by diminished activity of Erk1/2 pathway and decreased β-catenin and c-Myc expression when compared with wild-type FGF9. Importantly, the binding of FGF9 S99N to its receptor is severely impaired although the dimerization ability of mutant FGF9 itself or with wild-type FGF9 is not detectably affected, providing a basis for the defective FGFR signaling. Collectively, our data demonstrate a previously uncharacterized mutation in FGF9 as one of the causes of SYNS, implicating an important role of FGF9 in normal joint development.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Amino Acid Sequence</subject><subject>Animals</subject><subject>Biochemistry</subject><subject>Biological and medical sciences</subject><subject>Bone marrow</subject><subject>Cell growth</subject><subject>Child</subject><subject>Child, Preschool</subject><subject>DNA Mutational Analysis</subject><subject>Exons</subject><subject>Female</subject><subject>Fibroblast Growth Factor 9 - chemistry</subject><subject>Fibroblast Growth Factor 9 - genetics</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects. Genetic counseling</subject><subject>Genes</subject><subject>Genetics of eukaryotes. Biological and molecular evolution</subject><subject>Humans</subject><subject>Male</subject><subject>Medical genetics</subject><subject>Medical sciences</subject><subject>Middle Aged</subject><subject>Molecular and cellular biology</subject><subject>Molecular Sequence Data</subject><subject>Musculoskeletal system</subject><subject>Mutation</subject><subject>Mutation, Missense</subject><subject>Pedigree</subject><subject>Signal Transduction</subject><subject>Stem cells</subject><subject>Synostosis - genetics</subject><issn>0002-9297</issn><issn>1537-6605</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2009</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><recordid>eNqFkd9rFDEQx4Mo9qz-Az5IEPTt1kl2N9mACFJ7Z6GHiPocctlJm2MvuSa7xf735ryj_njQpwnkM19m5kPIcwYVAybebCqzub6qOICqQFQA8gGZsbaWcyGgfUhmAMDniit5Qp7kvAFgrIP6MTlhqu1UA2xGPq-mYfS7AemXuxDzGDPm_bNPcYv0ItMPE9IxUkNXPmcMGelqGs3oY6A-0PPvpXIaHV0sF4ouMeBT8siZIeOzYz0l3xbnX88-zi8_LS_O3l_ObduwsYwlOULtEJwVou9tVythjTVt63pmASX0bi2Zcp10xnHgwkLb2k6WfdYW61Py7pC7m9Zb7C2GMZlB75LfmnSno_H6z5_gr_VVvNVcglBClYDXx4AUbybMo976bHEYTMA4ZS1kI5ns2H9BDqxuBHQFfPkXuIlTCuUKmjMlGEiQBeIHyKaYc0J3PzIDvfeqN3rvVe-9ahAafja9-H3ZXy1HkQV4dQRMtmZwyQTr8z3HmWy6Yr9wbw8cFjW3HpPO1mOw2PuEdtR99P-a4wctw8Al</recordid><startdate>20090710</startdate><enddate>20090710</enddate><creator>Wu, Xiao-lin</creator><creator>Gu, Ming-min</creator><creator>Huang, Lei</creator><creator>Liu, Xue-song</creator><creator>Zhang, Hong-xin</creator><creator>Ding, Xiao-yi</creator><creator>Xu, Jian-qiang</creator><creator>Cui, Bin</creator><creator>Wang, Long</creator><creator>Lu, Shun-yuan</creator><creator>Chen, Xiao-yi</creator><creator>Zhang, Hai-guo</creator><creator>Huang, Wei</creator><creator>Yuan, Wen-tao</creator><creator>Yang, Jiang-ming</creator><creator>Gu, Qun</creator><creator>Fei, Jian</creator><creator>Chen, Zhu</creator><creator>Yuan, Zhi-min</creator><creator>Wang, Zhu-gang</creator><general>Elsevier Inc</general><general>Cell Press</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QP</scope><scope>7TK</scope><scope>7TM</scope><scope>7U7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>P64</scope><scope>RC3</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>20090710</creationdate><title>Multiple Synostoses Syndrome Is Due to a Missense Mutation in Exon 2 of FGF9 Gene</title><author>Wu, Xiao-lin ; Gu, Ming-min ; Huang, Lei ; Liu, Xue-song ; Zhang, Hong-xin ; Ding, Xiao-yi ; Xu, Jian-qiang ; Cui, Bin ; Wang, Long ; Lu, Shun-yuan ; Chen, Xiao-yi ; Zhang, Hai-guo ; Huang, Wei ; Yuan, Wen-tao ; Yang, Jiang-ming ; Gu, Qun ; Fei, Jian ; Chen, Zhu ; Yuan, Zhi-min ; Wang, Zhu-gang</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c541t-9272e03fe0fc66ddc8396caca55fd1c0e70dfb719f87faf2026c055c87297bce3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2009</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Amino Acid Sequence</topic><topic>Animals</topic><topic>Biochemistry</topic><topic>Biological and medical sciences</topic><topic>Bone marrow</topic><topic>Cell growth</topic><topic>Child</topic><topic>Child, Preschool</topic><topic>DNA Mutational Analysis</topic><topic>Exons</topic><topic>Female</topic><topic>Fibroblast Growth Factor 9 - chemistry</topic><topic>Fibroblast Growth Factor 9 - genetics</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects. Genetic counseling</topic><topic>Genes</topic><topic>Genetics of eukaryotes. Biological and molecular evolution</topic><topic>Humans</topic><topic>Male</topic><topic>Medical genetics</topic><topic>Medical sciences</topic><topic>Middle Aged</topic><topic>Molecular and cellular biology</topic><topic>Molecular Sequence Data</topic><topic>Musculoskeletal system</topic><topic>Mutation</topic><topic>Mutation, Missense</topic><topic>Pedigree</topic><topic>Signal Transduction</topic><topic>Stem cells</topic><topic>Synostosis - genetics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wu, Xiao-lin</creatorcontrib><creatorcontrib>Gu, Ming-min</creatorcontrib><creatorcontrib>Huang, Lei</creatorcontrib><creatorcontrib>Liu, Xue-song</creatorcontrib><creatorcontrib>Zhang, Hong-xin</creatorcontrib><creatorcontrib>Ding, Xiao-yi</creatorcontrib><creatorcontrib>Xu, Jian-qiang</creatorcontrib><creatorcontrib>Cui, Bin</creatorcontrib><creatorcontrib>Wang, Long</creatorcontrib><creatorcontrib>Lu, Shun-yuan</creatorcontrib><creatorcontrib>Chen, Xiao-yi</creatorcontrib><creatorcontrib>Zhang, Hai-guo</creatorcontrib><creatorcontrib>Huang, Wei</creatorcontrib><creatorcontrib>Yuan, Wen-tao</creatorcontrib><creatorcontrib>Yang, Jiang-ming</creatorcontrib><creatorcontrib>Gu, Qun</creatorcontrib><creatorcontrib>Fei, Jian</creatorcontrib><creatorcontrib>Chen, Zhu</creatorcontrib><creatorcontrib>Yuan, Zhi-min</creatorcontrib><creatorcontrib>Wang, Zhu-gang</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Calcium &amp; Calcified Tissue Abstracts</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>American journal of human genetics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wu, Xiao-lin</au><au>Gu, Ming-min</au><au>Huang, Lei</au><au>Liu, Xue-song</au><au>Zhang, Hong-xin</au><au>Ding, Xiao-yi</au><au>Xu, Jian-qiang</au><au>Cui, Bin</au><au>Wang, Long</au><au>Lu, Shun-yuan</au><au>Chen, Xiao-yi</au><au>Zhang, Hai-guo</au><au>Huang, Wei</au><au>Yuan, Wen-tao</au><au>Yang, Jiang-ming</au><au>Gu, Qun</au><au>Fei, Jian</au><au>Chen, Zhu</au><au>Yuan, Zhi-min</au><au>Wang, Zhu-gang</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Multiple Synostoses Syndrome Is Due to a Missense Mutation in Exon 2 of FGF9 Gene</atitle><jtitle>American journal of human genetics</jtitle><addtitle>Am J Hum Genet</addtitle><date>2009-07-10</date><risdate>2009</risdate><volume>85</volume><issue>1</issue><spage>53</spage><epage>63</epage><pages>53-63</pages><issn>0002-9297</issn><eissn>1537-6605</eissn><coden>AJHGAG</coden><abstract>Fibroblast growth factors (FGFs) play diverse roles in several developmental processes. Mutations leading to deregulated FGF signaling can cause human skeletal dysplasias and cancer. 1,2 Here we report a missense mutation (Ser99Asp) in exon 2 of FGF9 in 12 patients with multiple synostoses syndrome (SYNS) in a large Chinese family. In vitro studies demonstrate that FGF9 S99N is expressed and secreted as efficiently as wild-type FGF9 in transfected cells. However, FGF9 S99N induces compromised chondrocyte proliferation and differentiation, which is accompanied by enhanced osteogenic differentiation and matrix mineralization of bone marrow-derived mesenchymal stem cells (BMSCs). Biochemical analysis reveals that S99N mutation in FGF9 leads to significantly impaired FGF signaling, as evidenced by diminished activity of Erk1/2 pathway and decreased β-catenin and c-Myc expression when compared with wild-type FGF9. Importantly, the binding of FGF9 S99N to its receptor is severely impaired although the dimerization ability of mutant FGF9 itself or with wild-type FGF9 is not detectably affected, providing a basis for the defective FGFR signaling. Collectively, our data demonstrate a previously uncharacterized mutation in FGF9 as one of the causes of SYNS, implicating an important role of FGF9 in normal joint development.</abstract><cop>Cambridge, MA</cop><pub>Elsevier Inc</pub><pmid>19589401</pmid><doi>10.1016/j.ajhg.2009.06.007</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0002-9297
ispartof American journal of human genetics, 2009-07, Vol.85 (1), p.53-63
issn 0002-9297
1537-6605
language eng
recordid cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2706969
source MEDLINE; Cell Press Free Archives; Elsevier ScienceDirect Journals; EZB-FREE-00999 freely available EZB journals; PubMed Central
subjects Adolescent
Adult
Aged
Amino Acid Sequence
Animals
Biochemistry
Biological and medical sciences
Bone marrow
Cell growth
Child
Child, Preschool
DNA Mutational Analysis
Exons
Female
Fibroblast Growth Factor 9 - chemistry
Fibroblast Growth Factor 9 - genetics
Fundamental and applied biological sciences. Psychology
General aspects. Genetic counseling
Genes
Genetics of eukaryotes. Biological and molecular evolution
Humans
Male
Medical genetics
Medical sciences
Middle Aged
Molecular and cellular biology
Molecular Sequence Data
Musculoskeletal system
Mutation
Mutation, Missense
Pedigree
Signal Transduction
Stem cells
Synostosis - genetics
title Multiple Synostoses Syndrome Is Due to a Missense Mutation in Exon 2 of FGF9 Gene
url https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T10%3A16%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Multiple%20Synostoses%20Syndrome%20Is%20Due%20to%20a%20Missense%20Mutation%20in%20Exon%202%20of%20FGF9%20Gene&rft.jtitle=American%20journal%20of%20human%20genetics&rft.au=Wu,%20Xiao-lin&rft.date=2009-07-10&rft.volume=85&rft.issue=1&rft.spage=53&rft.epage=63&rft.pages=53-63&rft.issn=0002-9297&rft.eissn=1537-6605&rft.coden=AJHGAG&rft_id=info:doi/10.1016/j.ajhg.2009.06.007&rft_dat=%3Cproquest_pubme%3E1786658751%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=219610707&rft_id=info:pmid/19589401&rft_els_id=S0002929709002432&rfr_iscdi=true