Measurement of Lens Protein Aggregation in Vivo Using Dynamic Light Scattering in a Guinea Pig/UVA Model for Nuclear Cataract
The role of UVA radiation in the formation of human nuclear cataract is not well understood. We have previously shown that exposing guinea pigs for 5 months to a chronic low level of UVA light produces increased lens nuclear light scattering and elevated levels of protein disulfide. Here we have use...
Gespeichert in:
Veröffentlicht in: | Photochemistry and photobiology 2008-11, Vol.84 (6), p.1589-1595 |
---|---|
Hauptverfasser: | , , , |
Format: | Artikel |
Sprache: | eng |
Schlagworte: | |
Online-Zugang: | Volltext |
Tags: |
Tag hinzufügen
Keine Tags, Fügen Sie den ersten Tag hinzu!
|
container_end_page | 1595 |
---|---|
container_issue | 6 |
container_start_page | 1589 |
container_title | Photochemistry and photobiology |
container_volume | 84 |
creator | Francis Simpanya, M. Ansari, Rafat R. Leverenz, Victor Giblin, Frank J. |
description | The role of UVA radiation in the formation of human nuclear cataract is not well understood. We have previously shown that exposing guinea pigs for 5 months to a chronic low level of UVA light produces increased lens nuclear light scattering and elevated levels of protein disulfide. Here we have used the technique of dynamic light scattering (DLS) to investigate lens protein aggregation in vivo in the guinea pig/UVA model. DLS size distribution analysis conducted at the same location in the lens nucleus of control and UVA‐irradiated animals showed a 28% reduction in intensity of small diameter proteins in experimental lenses compared with controls (P |
doi_str_mv | 10.1111/j.1751-1097.2008.00390.x |
format | Article |
fullrecord | <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2702991</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69877392</sourcerecordid><originalsourceid>FETCH-LOGICAL-c6330-1d91abf7d2a87f23777b301d0042141a4d6924212d8d1052c229ad7b7e3a26e63</originalsourceid><addsrcrecordid>eNqNkl1v0zAUhiMEYmXwF5DFBXfJbCexYwkhVQU6pHZUgm4SN9Zp4mQuSbzZztZe7L_jrlX5uAHf-NjneV_5-JwoQgQnJKyzdUJ4TmKCBU8oxkWCcSpwsnkSjY6Jp9Eo3JK4YHl-Er1wbo0xyQQnz6MTUjAaODaKHuYK3GBVp3qPTI1mqndoYY1XukfjprGqAa9Nj8LxUt8ZtHS6b9CHbQ-dLtFMN9cefS3Be2V3iYABmg66V4AWujlbXo7R3FSqRbWx6GIoWwUWTcCDhdK_jJ7V0Dr16rCfRstPH79NzuPZl-nnyXgWlyxNcUwqQWBV84pCwWuacs5XKSYVxhklGYGsYoKGkFZFRXBOS0oFVHzFVQqUKZaeRu_3vjfDqlNVGYq10MobqzuwW2lAyz8zvb6WjbmTlGMqBAkGbw8G1twOynnZaVeqtoVemcFJJgrOU0H_CRLBijx_dHzzF7g2g-3DL8hQIM0wz0SAij1UWuOcVfXxyQTL3STItdw1XO4aLneTIB8nQW6C9PXvJf8SHlofgHd74F63avvfxnJxvghBkMd7uXZebY5ysD8k4ynP5dXFVH6fz6_oJGeSpD8B58bQQw</addsrcrecordid><sourcetype>Open Access Repository</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>237240749</pqid></control><display><type>article</type><title>Measurement of Lens Protein Aggregation in Vivo Using Dynamic Light Scattering in a Guinea Pig/UVA Model for Nuclear Cataract</title><source>MEDLINE</source><source>Access via Wiley Online Library</source><creator>Francis Simpanya, M. ; Ansari, Rafat R. ; Leverenz, Victor ; Giblin, Frank J.</creator><creatorcontrib>Francis Simpanya, M. ; Ansari, Rafat R. ; Leverenz, Victor ; Giblin, Frank J.</creatorcontrib><description>The role of UVA radiation in the formation of human nuclear cataract is not well understood. We have previously shown that exposing guinea pigs for 5 months to a chronic low level of UVA light produces increased lens nuclear light scattering and elevated levels of protein disulfide. Here we have used the technique of dynamic light scattering (DLS) to investigate lens protein aggregation in vivo in the guinea pig/UVA model. DLS size distribution analysis conducted at the same location in the lens nucleus of control and UVA‐irradiated animals showed a 28% reduction in intensity of small diameter proteins in experimental lenses compared with controls (P < 0.05). In addition, large diameter proteins in UVA‐exposed lens nuclei increased five‐fold in intensity compared to controls (P < 0.05). The UVA‐induced increase in apparent size of lens nuclear small diameter proteins was three‐fold (P < 0.01), and the size of large diameter aggregates was more than four‐fold in experimental lenses compared with controls. The diameter of crystallin aggregates in the UVA‐irradiated lens nucleus was estimated to be 350 nm, a size able to scatter light. No significant changes in protein size were detected in the anterior cortex of UVA‐irradiated lenses. It is presumed that the presence of a UVA chromophore in the guinea pig lens (NADPH bound to zeta crystallin), as well as traces of oxygen, contributed to UVA‐induced crystallin aggregation. The results indicate a potentially harmful role for UVA light in the lens nucleus. A similar process of UVA‐irradiated protein aggregation may take place in the older human lens nucleus, accelerating the formation of human nuclear cataract.</description><identifier>ISSN: 0031-8655</identifier><identifier>EISSN: 1751-1097</identifier><identifier>DOI: 10.1111/j.1751-1097.2008.00390.x</identifier><identifier>PMID: 18627516</identifier><identifier>CODEN: PHCBAP</identifier><language>eng</language><publisher>Oxford, UK: Blackwell Publishing Ltd</publisher><subject>Animals ; Brownian motion ; Cataract - metabolism ; Cataracts ; Crystallins - analysis ; Crystallins - metabolism ; Disease Models, Animal ; Guinea Pigs ; Hair loss ; Lamps ; Male ; Older people ; Proteins ; Studies ; Ultraviolet Rays</subject><ispartof>Photochemistry and photobiology, 2008-11, Vol.84 (6), p.1589-1595</ispartof><rights>2008 The Authors. Journal Compilation. The American Society of Photobiology</rights><rights>Copyright American Society for Photobiology Nov/Dec 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c6330-1d91abf7d2a87f23777b301d0042141a4d6924212d8d1052c229ad7b7e3a26e63</citedby><cites>FETCH-LOGICAL-c6330-1d91abf7d2a87f23777b301d0042141a4d6924212d8d1052c229ad7b7e3a26e63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1111%2Fj.1751-1097.2008.00390.x$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1111%2Fj.1751-1097.2008.00390.x$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>230,314,780,784,885,1417,27924,27925,45574,45575</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18627516$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Francis Simpanya, M.</creatorcontrib><creatorcontrib>Ansari, Rafat R.</creatorcontrib><creatorcontrib>Leverenz, Victor</creatorcontrib><creatorcontrib>Giblin, Frank J.</creatorcontrib><title>Measurement of Lens Protein Aggregation in Vivo Using Dynamic Light Scattering in a Guinea Pig/UVA Model for Nuclear Cataract</title><title>Photochemistry and photobiology</title><addtitle>Photochem Photobiol</addtitle><description>The role of UVA radiation in the formation of human nuclear cataract is not well understood. We have previously shown that exposing guinea pigs for 5 months to a chronic low level of UVA light produces increased lens nuclear light scattering and elevated levels of protein disulfide. Here we have used the technique of dynamic light scattering (DLS) to investigate lens protein aggregation in vivo in the guinea pig/UVA model. DLS size distribution analysis conducted at the same location in the lens nucleus of control and UVA‐irradiated animals showed a 28% reduction in intensity of small diameter proteins in experimental lenses compared with controls (P < 0.05). In addition, large diameter proteins in UVA‐exposed lens nuclei increased five‐fold in intensity compared to controls (P < 0.05). The UVA‐induced increase in apparent size of lens nuclear small diameter proteins was three‐fold (P < 0.01), and the size of large diameter aggregates was more than four‐fold in experimental lenses compared with controls. The diameter of crystallin aggregates in the UVA‐irradiated lens nucleus was estimated to be 350 nm, a size able to scatter light. No significant changes in protein size were detected in the anterior cortex of UVA‐irradiated lenses. It is presumed that the presence of a UVA chromophore in the guinea pig lens (NADPH bound to zeta crystallin), as well as traces of oxygen, contributed to UVA‐induced crystallin aggregation. The results indicate a potentially harmful role for UVA light in the lens nucleus. A similar process of UVA‐irradiated protein aggregation may take place in the older human lens nucleus, accelerating the formation of human nuclear cataract.</description><subject>Animals</subject><subject>Brownian motion</subject><subject>Cataract - metabolism</subject><subject>Cataracts</subject><subject>Crystallins - analysis</subject><subject>Crystallins - metabolism</subject><subject>Disease Models, Animal</subject><subject>Guinea Pigs</subject><subject>Hair loss</subject><subject>Lamps</subject><subject>Male</subject><subject>Older people</subject><subject>Proteins</subject><subject>Studies</subject><subject>Ultraviolet Rays</subject><issn>0031-8655</issn><issn>1751-1097</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><sourceid>EIF</sourceid><sourceid>ABUWG</sourceid><sourceid>AFKRA</sourceid><sourceid>AZQEC</sourceid><sourceid>BENPR</sourceid><sourceid>CCPQU</sourceid><sourceid>DWQXO</sourceid><sourceid>GNUQQ</sourceid><recordid>eNqNkl1v0zAUhiMEYmXwF5DFBXfJbCexYwkhVQU6pHZUgm4SN9Zp4mQuSbzZztZe7L_jrlX5uAHf-NjneV_5-JwoQgQnJKyzdUJ4TmKCBU8oxkWCcSpwsnkSjY6Jp9Eo3JK4YHl-Er1wbo0xyQQnz6MTUjAaODaKHuYK3GBVp3qPTI1mqndoYY1XukfjprGqAa9Nj8LxUt8ZtHS6b9CHbQ-dLtFMN9cefS3Be2V3iYABmg66V4AWujlbXo7R3FSqRbWx6GIoWwUWTcCDhdK_jJ7V0Dr16rCfRstPH79NzuPZl-nnyXgWlyxNcUwqQWBV84pCwWuacs5XKSYVxhklGYGsYoKGkFZFRXBOS0oFVHzFVQqUKZaeRu_3vjfDqlNVGYq10MobqzuwW2lAyz8zvb6WjbmTlGMqBAkGbw8G1twOynnZaVeqtoVemcFJJgrOU0H_CRLBijx_dHzzF7g2g-3DL8hQIM0wz0SAij1UWuOcVfXxyQTL3STItdw1XO4aLneTIB8nQW6C9PXvJf8SHlofgHd74F63avvfxnJxvghBkMd7uXZebY5ysD8k4ynP5dXFVH6fz6_oJGeSpD8B58bQQw</recordid><startdate>200811</startdate><enddate>200811</enddate><creator>Francis Simpanya, M.</creator><creator>Ansari, Rafat R.</creator><creator>Leverenz, Victor</creator><creator>Giblin, Frank J.</creator><general>Blackwell Publishing Ltd</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>4T-</scope><scope>7RV</scope><scope>7TM</scope><scope>7U7</scope><scope>7X2</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8AF</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>KB0</scope><scope>LK8</scope><scope>M0K</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>RC3</scope><scope>S0X</scope><scope>7X8</scope><scope>5PM</scope></search><sort><creationdate>200811</creationdate><title>Measurement of Lens Protein Aggregation in Vivo Using Dynamic Light Scattering in a Guinea Pig/UVA Model for Nuclear Cataract</title><author>Francis Simpanya, M. ; Ansari, Rafat R. ; Leverenz, Victor ; Giblin, Frank J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c6330-1d91abf7d2a87f23777b301d0042141a4d6924212d8d1052c229ad7b7e3a26e63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animals</topic><topic>Brownian motion</topic><topic>Cataract - metabolism</topic><topic>Cataracts</topic><topic>Crystallins - analysis</topic><topic>Crystallins - metabolism</topic><topic>Disease Models, Animal</topic><topic>Guinea Pigs</topic><topic>Hair loss</topic><topic>Lamps</topic><topic>Male</topic><topic>Older people</topic><topic>Proteins</topic><topic>Studies</topic><topic>Ultraviolet Rays</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Francis Simpanya, M.</creatorcontrib><creatorcontrib>Ansari, Rafat R.</creatorcontrib><creatorcontrib>Leverenz, Victor</creatorcontrib><creatorcontrib>Giblin, Frank J.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Docstoc</collection><collection>Nursing & Allied Health Database</collection><collection>Nucleic Acids Abstracts</collection><collection>Toxicology Abstracts</collection><collection>Agricultural Science Collection</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>STEM Database</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Database (Alumni Edition)</collection><collection>ProQuest Biological Science Collection</collection><collection>Agricultural Science Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Nursing & Allied Health Premium</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>Genetics Abstracts</collection><collection>SIRS Editorial</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><jtitle>Photochemistry and photobiology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Francis Simpanya, M.</au><au>Ansari, Rafat R.</au><au>Leverenz, Victor</au><au>Giblin, Frank J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Measurement of Lens Protein Aggregation in Vivo Using Dynamic Light Scattering in a Guinea Pig/UVA Model for Nuclear Cataract</atitle><jtitle>Photochemistry and photobiology</jtitle><addtitle>Photochem Photobiol</addtitle><date>2008-11</date><risdate>2008</risdate><volume>84</volume><issue>6</issue><spage>1589</spage><epage>1595</epage><pages>1589-1595</pages><issn>0031-8655</issn><eissn>1751-1097</eissn><coden>PHCBAP</coden><abstract>The role of UVA radiation in the formation of human nuclear cataract is not well understood. We have previously shown that exposing guinea pigs for 5 months to a chronic low level of UVA light produces increased lens nuclear light scattering and elevated levels of protein disulfide. Here we have used the technique of dynamic light scattering (DLS) to investigate lens protein aggregation in vivo in the guinea pig/UVA model. DLS size distribution analysis conducted at the same location in the lens nucleus of control and UVA‐irradiated animals showed a 28% reduction in intensity of small diameter proteins in experimental lenses compared with controls (P < 0.05). In addition, large diameter proteins in UVA‐exposed lens nuclei increased five‐fold in intensity compared to controls (P < 0.05). The UVA‐induced increase in apparent size of lens nuclear small diameter proteins was three‐fold (P < 0.01), and the size of large diameter aggregates was more than four‐fold in experimental lenses compared with controls. The diameter of crystallin aggregates in the UVA‐irradiated lens nucleus was estimated to be 350 nm, a size able to scatter light. No significant changes in protein size were detected in the anterior cortex of UVA‐irradiated lenses. It is presumed that the presence of a UVA chromophore in the guinea pig lens (NADPH bound to zeta crystallin), as well as traces of oxygen, contributed to UVA‐induced crystallin aggregation. The results indicate a potentially harmful role for UVA light in the lens nucleus. A similar process of UVA‐irradiated protein aggregation may take place in the older human lens nucleus, accelerating the formation of human nuclear cataract.</abstract><cop>Oxford, UK</cop><pub>Blackwell Publishing Ltd</pub><pmid>18627516</pmid><doi>10.1111/j.1751-1097.2008.00390.x</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0031-8655 |
ispartof | Photochemistry and photobiology, 2008-11, Vol.84 (6), p.1589-1595 |
issn | 0031-8655 1751-1097 |
language | eng |
recordid | cdi_pubmedcentral_primary_oai_pubmedcentral_nih_gov_2702991 |
source | MEDLINE; Access via Wiley Online Library |
subjects | Animals Brownian motion Cataract - metabolism Cataracts Crystallins - analysis Crystallins - metabolism Disease Models, Animal Guinea Pigs Hair loss Lamps Male Older people Proteins Studies Ultraviolet Rays |
title | Measurement of Lens Protein Aggregation in Vivo Using Dynamic Light Scattering in a Guinea Pig/UVA Model for Nuclear Cataract |
url | https://sfx.bib-bvb.de/sfx_tum?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T05%3A34%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Measurement%20of%20Lens%20Protein%20Aggregation%20in%20Vivo%20Using%20Dynamic%20Light%20Scattering%20in%20a%20Guinea%20Pig/UVA%20Model%20for%20Nuclear%20Cataract&rft.jtitle=Photochemistry%20and%20photobiology&rft.au=Francis%20Simpanya,%20M.&rft.date=2008-11&rft.volume=84&rft.issue=6&rft.spage=1589&rft.epage=1595&rft.pages=1589-1595&rft.issn=0031-8655&rft.eissn=1751-1097&rft.coden=PHCBAP&rft_id=info:doi/10.1111/j.1751-1097.2008.00390.x&rft_dat=%3Cproquest_pubme%3E69877392%3C/proquest_pubme%3E%3Curl%3E%3C/url%3E&disable_directlink=true&sfx.directlink=off&sfx.report_link=0&rft_id=info:oai/&rft_pqid=237240749&rft_id=info:pmid/18627516&rfr_iscdi=true |